Masakhane-Afrisenti at SemEval-2023 Task 12: Sentiment Analysis using Afro-centric Language Models and Adapters for Low-resource African Languages

被引:0
|
作者
Azime, Israel Abebe [2 ]
Al-Azzawi, Sana Sabah [3 ]
Lambebo Tonja, Atnafu [4 ]
Shode, Iyanuoluwa [5 ]
Alabi, Jesujoba [2 ]
Awokoya, Ayodele [6 ]
Oduwole, Mardiyyah [1 ]
Adewumi, Tosin [3 ]
Fanijo, Samuel [7 ]
Oyinkansola, Awosan [1 ]
Yousuf, Oreen [1 ]
机构
[1] Masakhane NLP, Seoul, South Korea
[2] Saarland Univ, Saarbrucken, Germany
[3] Lulea Univ Technol, Lulea, Sweden
[4] Inst Politecn Nacl, Mexico City, DF, Mexico
[5] Montclair State Univ, Montclair, NJ USA
[6] Univ Ibadan, Ibadan, Nigeria
[7] Iowa State Univ, Ames, IA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe our submission for the AfriSenti-SemEval Shared Task 12 of SemEval-2023. The task aims to perform monolingual sentiment classification (sub-task A) for 12 African languages, multilingual sentiment classification (sub-task B), and zero-shot sentiment classification (task C). For sub-task A, we conducted experiments using classical machine learning classifiers, Afro-centric language models, and language-specific models. For task B, we fine-tuned multilingual pre-trained language models that support many of the languages in the task. For task C, we made use of a parameter-efficient Adapter approach that leverages monolingual texts in the target language for effective zero-shot transfer. Our findings suggest that using pre-trained Afrocentric language models improves performance for low-resource African languages. We also ran experiments using adapters for zero-shot tasks, and the results suggest that we can obtain promising results by using adapters with limited resources.
引用
收藏
页码:1311 / 1316
页数:6
相关论文
共 27 条
  • [1] DuluthNLP at SemEval-2023 Task 12: AfriSenti-SemEval: Sentiment Analysis for Low-resource African Languages using Twitter Dataset
    Akrah, Samuel
    Pedersen, Ted
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1697 - 1701
  • [2] SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)
    Muhammad, Shamsuddeen Hassan
    Abdulmumin, Idris
    Yimam, Seid Muhie
    Adelani, David Ifeoluwa
    Ahmad, Ibrahim Said
    Ousidhoum, Nedjma
    Ayele, Abinew Ali
    Mohammad, Saif M.
    Beloucif, Meriem
    Ruder, Sebastian
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 2319 - 2337
  • [3] Team ISCL_WINTER at SemEval-2023 Task 12:AfriSenti-SemEval: Sentiment Analysis for Low-resource African Languages using Twitter Dataset
    Hancharova, Alina
    Wang, John
    Kumar, Mayank
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1085 - 1089
  • [4] Trinity at SemEval-2023 Task 12: Sentiment Analysis for Low-resource African Languages using Twitter Dataset
    Rathi, Shashank
    Pande, Siddhesh
    Atkare, Harshwardhan
    Tangsali, Rahul
    Vyawahare, Aditya
    Kadam, Dipali
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1161 - 1165
  • [5] UMUTeam at SemEval-2023 Task 12: Ensemble Learning of LLMs applied to Sentiment Analysis for Low-resource African Languages
    Garcia-Diaz, Jose Antonio
    Caparros-Laiz, Camilo
    Almela, Angela
    Alcaraz-Marmol, Gema
    Marin-Perez, Maria Jose
    Valencia-Garcia, Rafael
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 285 - 292
  • [6] Seals_Lab at SemEval-2023 Task 12: Sentiment Analysis for Low-resource African Languages, Hausa and Igbo
    Raychawdhary, Nilanjana
    Das, Amit
    Dozier, Gerry
    Seals, Cheryl D.
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1508 - 1517
  • [7] PingAnLifeInsurance at SemEval-2023 Task 12: Sentiment Analysis for Low-resource African Languages with Multi-Model Fusion
    Jin, MeiZhi
    Chen, Cheng
    Zhou, MengYuan
    Yuan, MengFei
    Hou, XiaoLong
    Du, XiYang
    Jiang, LianXin
    Li, JianYu
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 679 - 685
  • [8] UIO at SemEval-2023 Task 12: Multilingual fine-tuning for sentiment classification in low-resource languages
    Ronningstad, Egil
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1054 - 1060
  • [9] HausaNLP at SemEval-2023 Task 12: Leveraging African Low Resource TweetData for Sentiment Analysis
    Salahudeen, Saheed Abdullahi
    Lawan, Falalu Ibrahim
    Wali, Ahmad Mustapha
    Imam, Amina Abubakar
    Shuaibu, Aliyu Rabiu
    Yusuf, Aliyu
    Rabiu, Nur Bala
    Bello, Musa
    Adamu, Shamsuddeen Umaru
    Aliyu, Saminu Mohammad
    Gadanya, Murja Sani
    Muaz, Sanah Abdullahi
    Ahmad, Mahmoud Said
    Abdullahi, Abdulkadir
    Jamoh, Abdulmalik Yusuf
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 50 - 57
  • [10] NLNDE at SemEval-2023 Task 12: Adaptive Pretraining and Source Language Selection for Low-Resource Multilingual Sentiment Analysis
    Wang, Mingyang
    Adel, Heike
    Lange, Lukas
    Stroetgen, Jannik
    Schuetze, Hinrich
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 488 - 497