Analyzing Data Incompleteness for MRI Data for Quality Enhancement

被引:0
|
作者
Shanbhag, Sanjay [1 ]
Raju, Supreetha [2 ]
Gurupur, Varadraj P. [3 ,4 ]
Sowmya Kamath, S. [2 ]
Kandala, Rajesh N. V. P. S. [5 ]
Trader, Elizabeth A. [6 ]
Lal, Shyam [7 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA
[2] Natl Inst Technol Karnataka, Dept Informat Technol, Surathkal 575025, India
[3] Univ Cent Florida, Ctr Decis Support Syst & Informat, Orlando, FL 32816 USA
[4] Univ Cent Florida, Sch Global Hlth Management & Informat, Orlando, FL 32816 USA
[5] VIT AP Univ, Sch Elect Engn, Amaravati, Andhra Pradesh, India
[6] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
[7] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Surathkal 575025, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Motion artifacts; Magnetic resonance imaging; Image reconstruction; Accuracy; Liver; Fast Fourier transforms; Euclidean distance; Encoding; Data models; Transfer learning; Data incompleteness; diagnostic image quality; magnetic resonance imaging; under-sampling detection; image processing;
D O I
10.1109/ACCESS.2024.3511384
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from various sources, including hardware imperfections, patient motion, and image acquisition techniques. Detecting and mitigating these artifacts are crucial steps in ensuring MRI scans' reliability and clinical utility. In this paper, we present algorithms specifically designed to address the challenges of undersampling and motion artifacts in MR images. Our approach involves leveraging advanced image processing techniques, including line detection algorithms for undersampling detection and blur parameter estimation for motion artifact analysis. By accurately identifying and quantifying these artifacts, our algorithms aim to improve MRI data's overall quality and completeness, ultimately enhancing diagnostic accuracy and patient care.
引用
收藏
页码:183542 / 183554
页数:13
相关论文
共 50 条
  • [1] Analyzing quality data
    Newman, L
    SOTSIOLOGICHESKIE ISSLEDOVANIYA, 1998, (12): : 101 - 114
  • [2] Analyzing and Improving Data Quality
    Buccella, Agustina
    Cechich, Alejandra
    Domingo, Gonzalo
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2008, 8 (02): : 57 - 63
  • [3] Incompleteness of Lamotrigine Data
    Drug Safety, 2001, 24 : 155 - 156
  • [4] Incompleteness of Lamotrigine Data
    Drug Safety, 2001, 24 : 155 - 155
  • [5] Incompleteness, error, approximation, and uncertainty: An ontological approach to data quality
    Frank, Andrew U.
    GEOGRAPHIC UNCERTAINTY IN ENVIRONMENTAL SECURITY, 2007, : 107 - 131
  • [6] Machine Learning Analysis for Data Incompleteness (MADI): Analyzing the Data Completeness of Patient Records Using a Random Variable Approach to Predict the Incompleteness of Electronic Health Records
    Gurupur, Varadraj P.
    Shelleh, Muhammed
    IEEE ACCESS, 2021, 9 : 95994 - 96001
  • [7] Acquisition Guidelines and Quality Assessment Tools for Analyzing Neonatal Diffusion Tensor MRI Data
    Heemskerk, A. M.
    Leemans, A.
    Plaisier, A.
    Pieterman, K.
    Lequin, M. H.
    Dudink, J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (08) : 1496 - 1505
  • [8] Analyzing Linked Data Quality with LiQuate
    Ruckhaus, Edna
    Vidal, Maria-Esther
    Castillo, Simon
    Burguillos, Oscar
    Baldizan, Oriana
    SEMANTIC WEB: ESWC 2014 SATELLITE EVENTS, 2014, 8798 : 488 - 493
  • [9] Analyzing the Quality of Twitter Data Streams
    Franco Arolfo
    Kevin Cortés Rodriguez
    Alejandro Vaisman
    Information Systems Frontiers, 2022, 24 : 349 - 369
  • [10] Analyzing the Quality of Twitter Data Streams
    Arolfo, Franco
    Rodriguez, Kevin Cortes
    Vaisman, Alejandro
    INFORMATION SYSTEMS FRONTIERS, 2022, 24 (01) : 349 - 369