Auto-Contouring of High-Risk Clinical Target Volume and Organ-at-Risks for Cervical Cancer HDR

被引:0
|
作者
Lei, Y. [1 ]
Chao, M. [2 ]
Yang, K. [1 ]
Gupta, V. [1 ]
Yoshida, E. [3 ]
Wang, T. [1 ]
Yang, X. [4 ]
Liu, T. [1 ]
机构
[1] Icahn Sch Med Mt Sinai, New York, NY USA
[2] Mt Sinai Hlth Syst, New York, NY USA
[3] Univ Calif San Francisco, San Francisco, CA USA
[4] Emory Univ, Atlanta, GA USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU300-GPD(
引用
收藏
页码:7686 / 7686
页数:1
相关论文
共 50 条
  • [1] High-Risk Clinical Target Volume Auto-Contouring on MRI for Cervical Cancer Brachytherapy Using 3D U-Net Transfer Learning
    Barrett, Fletcher
    Quirk, Sarah
    Souza, Roberto
    Stenhouse, Kailyn
    Martell, Kevin
    Roumeliotis, Michael
    McGeachy, Philip
    MEDICAL PHYSICS, 2024, 51 (08) : 5799 - 5799
  • [2] Landmark-based auto-contouring of clinical target volumes for radiotherapy of nasopharyngeal cancer
    Sjogreen, Carlos
    Netherton, Tucker J.
    Lee, Anna
    Soliman, Moaaz
    Gay, Skylar S.
    Nguyen, Callistus
    Mumme, Raymond
    Vazquez, Ivan
    Rhee, Dong Joo
    Cardenas, Carlos E.
    Martel, Mary K.
    Beadle, Beth M.
    Court, Laurence Edward
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (09):
  • [3] Comparison of MRI and clinical evaluation of cervical cancer -: Significance for target volume definition and organ contouring in brachytherapy
    Dimopoulos, J
    Schard, G
    Kirisits, C
    Lang, S
    Goldner, G
    Wachter, S
    Wachter-Gerstner, N
    Helbich, T
    Pötter, R
    STRAHLENTHERAPIE UND ONKOLOGIE, 2004, 180 : 114 - 115
  • [4] Assessing Organ-at-risk Auto-contouring Solutions: Which Metrics are most predictive of clinical Time Savings?
    Putz, F.
    Huang, Y.
    Weissmann, T.
    Mansoorian, S.
    Lamrani, A.
    Sommer, P.
    Fischer, S.
    Srinivasan, A.
    Frey, B.
    Gaipl, U.
    Ott, O.
    Fietkau, R.
    Bert, C.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2022, 198 (SUPPL 1) : S67 - S68
  • [5] Inter-Observer variation of Target and Organ Contouring Before and After the Adoption of A deep-Learning Auto-Contouring Model for Localized Prostate Cancer
    Wang, Y.
    Kamran, S.
    Efstathiou, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E256 - E257
  • [6] Automatic segmentation of high-risk clinical target volume and organs at risk in brachytherapy of cervical cancer with a convolutional neural network
    Zhu, J.
    Yan, J.
    Zhang, J.
    Yu, L.
    Song, A.
    Zheng, Z.
    Chen, Y.
    Wang, S.
    Chen, Q.
    Liu, Z.
    Zhang, F.
    CANCER RADIOTHERAPIE, 2024, 28 (04): : 354 - 364
  • [7] Statistical Analysis of Interfraction Dose Variations of High-Risk Clinical Target Volume and Organs at Risk for Cervical Cancer High-Dose-Rate Brachytherapy
    Washington, Brien
    Randall, Marcus
    Fabian, Denise
    Cheek, Dennis
    Wang, Chi
    Luo, Wei
    ADVANCES IN RADIATION ONCOLOGY, 2022, 7 (06)
  • [8] Therapeutic Benefit of Intracavitary-interstitial Brachytherapy in Cervical Cancer Patients with Small and Large High-risk Clinical Target Volume
    Tambas, Makbule
    TURK ONKOLOJI DERGISI-TURKISH JOURNAL OF ONCOLOGY, 2021, 36 (04): : 431 - 437
  • [9] Evaluation of Deep Learning Clinical Target Volumes Auto-Contouring for Magnetic Resonance Imaging-Guided Online Adaptive Treatment of Rectal Cancer
    Silverio, Nicole Ferreira
    van den Wollenberg, Wouter
    Betgen, Anja
    Wiersema, Lisa
    Marijnen, Corrie
    Peters, Femke
    van der Heide, Uulke A.
    Simoes, Rita
    Janssen, Tomas
    ADVANCES IN RADIATION ONCOLOGY, 2024, 9 (06)
  • [10] Assessment of uterus position as a surrogate for high-risk clinical target volume with respect to the applicator position for multiple fractions of brachytherapy in cervical cancer
    Rachel Cooper
    Elizabeth Brearley
    Pervin Hurmuz
    Hima Bindu Musunuru
    Carolyn Richardson
    Sara Swift
    Jane Orton
    Peter Bownes
    Archives of Gynecology and Obstetrics, 2014, 290 : 1201 - 1205