DeepMFFGO: A Protein Function Prediction Method for Large-Scale Multifeature Fusion

被引:0
|
作者
Wang, Jingfu [1 ,2 ,3 ]
Chen, Jiaying [1 ,2 ,3 ]
Hu, Yue [4 ,5 ]
Song, Chaolin [1 ,2 ,3 ]
Li, Xinhui [4 ,5 ]
Qian, Yurong [2 ,3 ,4 ,5 ]
Deng, Lei [1 ,6 ]
机构
[1] Xinjiang Univ, Sch Software, Urumqi 830091, Peoples R China
[2] Xinjiang Univ, Xinjiang Engn Res Ctr Big Data & Intelligent Softw, Sch Software, Urumqi 830091, Peoples R China
[3] Xinjiang Univ, Key Lab Software Engn, Urumqi 830091, Peoples R China
[4] Xinjiang Univ, Sch Comp Sci & Technol, Urumqi 830046, Peoples R China
[5] Xinjiang Univ, Joint Int Res Lab Silk Rd Multilingual Cognit Comp, Urumqi 830046, Xinjiang, Peoples R China
[6] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
关键词
BLAST;
D O I
10.1021/acs.jcim.5c00062
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Protein functional studies are crucial in the fields of drug target discovery and drug design. However, the existing methods have significant bottlenecks in utilizing multisource data fusion and Gene Ontology (GO) hierarchy. To this end, this study innovatively proposes the DeepMFFGO model designed for protein function prediction under large-scale multifeature fusion. A fine-tuning strategy using intermediate-level feature selection is proposed to reduce redundancy in protein sequences and mitigate distortion of the top-level features. A hierarchical progressive fusion structure is designed to explore feature connections, optimize complementarity through dynamic weight allocation, and reduce redundant interference. On the CAFA3 data set, the F max values of the DeepMFFGO model on the MF, BP, and CC ontologies reach 0.702, 0.599, and 0.704, respectively, which are improved by 4.2%, 2.4%, and 0.07%, respectively, compared with state-of-the-art multisource methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A large-scale evaluation of computational protein function prediction
    Radivojac P.
    Clark W.T.
    Oron T.R.
    Schnoes A.M.
    Wittkop T.
    Sokolov A.
    Graim K.
    Funk C.
    Verspoor K.
    Ben-Hur A.
    Pandey G.
    Yunes J.M.
    Talwalkar A.S.
    Repo S.
    Souza M.L.
    Piovesan D.
    Casadio R.
    Wang Z.
    Cheng J.
    Fang H.
    Gough J.
    Koskinen P.
    Törönen P.
    Nokso-Koivisto J.
    Holm L.
    Cozzetto D.
    Buchan D.W.A.
    Bryson K.
    Jones D.T.
    Limaye B.
    Inamdar H.
    Datta A.
    Manjari S.K.
    Joshi R.
    Chitale M.
    Kihara D.
    Lisewski A.M.
    Erdin S.
    Venner E.
    Lichtarge O.
    Rentzsch R.
    Yang H.
    Romero A.E.
    Bhat P.
    Paccanaro A.
    Hamp T.
    Kaßner R.
    Seemayer S.
    Vicedo E.
    Schaefer C.
    Nature Methods, 2013, 10 (3) : 221 - 227
  • [2] A large-scale evaluation of computational protein function prediction
    Radivojac, Predrag
    Clark, Wyatt T.
    Oron, Tal Ronnen
    Schnoes, Alexandra M.
    Wittkop, Tobias
    Sokolov, Artem
    Graim, Kiley
    Funk, Christopher
    Verspoor, Karin
    Ben-Hur, Asa
    Pandey, Gaurav
    Yunes, Jeffrey M.
    Talwalkar, Ameet S.
    Repo, Susanna
    Souza, Michael L.
    Piovesan, Damiano
    Casadio, Rita
    Wang, Zheng
    Cheng, Jianlin
    Fang, Hai
    Goughl, Julian
    Koskinen, Patrik
    Toronen, Petri
    Nokso-Koivisto, Jussi
    Holm, Liisa
    Cozzetto, Domenico
    Buchan, Daniel W. A.
    Bryson, Kevin
    Jones, David T.
    Limaye, Bhakti
    Inamdar, Harshal
    Datta, Avik
    Manjari, Sunitha K.
    Joshi, Rajendra
    Chitale, Meghana
    Kihara, Daisuke
    Lisewski, Andreas M.
    Erdin, Serkan
    Venner, Eric
    Lichtarge, Olivier
    Rentzsch, Robert
    Yang, Haixuan
    Romero, Alfonso E.
    Bhat, Prajwal
    Paccanaro, Alberto
    Hamp, Tobias
    Kassner, Rebecca
    Seemayer, Stefan
    Vicedo, Esmeralda
    Schaefer, Christian
    NATURE METHODS, 2013, 10 (03) : 221 - 227
  • [3] Large-scale prediction of protein structure and function from sequence
    Tosatto, S. C. E.
    Toppo, S.
    CURRENT PHARMACEUTICAL DESIGN, 2006, 12 (17) : 2067 - 2086
  • [4] Large-scale prediction of function shift in protein families with a focus on enzymatic function
    Abhiman, S
    Sonnhammer, ELL
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (04) : 758 - 768
  • [5] NetGO: improving large-scale protein function prediction with massive network information
    You, Ronghui
    Yao, Shuwei
    Xiong, Yi
    Huang, Xiaodi
    Sun, Fengzhu
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W379 - W387
  • [6] DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
    You, Ronghui
    Yao, Shuwei
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    BIOINFORMATICS, 2021, 37 : I262 - I271
  • [7] A large-scale protein-function database
    Rolf Apweiler
    Richard Armstrong
    Amos Bairoch
    Athel Cornish-Bowden
    Peter J Halling
    Jan-Hendrik S Hofmeyr
    Carsten Kettner
    Thomas S Leyh
    Johann Rohwer
    Dietmar Schomburg
    Christoph Steinbeck
    Keith Tipton
    Nature Chemical Biology, 2010, 6 : 785 - 785
  • [8] A large-scale protein-function database
    Apweiler, Rolf
    Armstrong, Richard
    Bairoch, Amos
    Cornish-Bowden, Athel
    Halling, Peter J.
    Hofmeyr, Jan-Hendrik S.
    Kettner, Carsten
    Leyh, Thomas S.
    Rohwer, Johann
    Schomburg, Dietmar
    Steinbeck, Christoph
    Tipton, Keith
    NATURE CHEMICAL BIOLOGY, 2010, 6 (11) : 785 - 785
  • [9] Large-scale plant protein subcellular location prediction
    Chou, Kuo-Chen
    Shen, Hong-Bin
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2007, 100 (03) : 665 - 678
  • [10] Large-scale prediction of protein-protein interactions from structures
    Martial Hue
    Michael Riffle
    Jean-Philippe Vert
    William S Noble
    BMC Bioinformatics, 11