ON METRICS FOR ANALYSIS OF FUNCTIONAL DATA ON GEOMETRIC DOMAINS

被引:0
|
作者
Anbouhi, Soheil [1 ]
Mio, Washington [2 ]
Okutan, Osman berat [3 ]
机构
[1] Western Carolina Univ, Dept Math & Comp Sci, Cullowhee, NC 28723 USA
[2] Florida Sate Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Max Planck Inst Math Sci, Berlin, Germany
来源
FOUNDATIONS OF DATA SCIENCE | 2024年
关键词
Functional data; Gromov-Prohorov distance; Gromov-Wasserstein dis- tance; optimal transport; functional curvature; SPACE;
D O I
10.3934/fods.2024046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper employs techniques from metric geometry and optimal transport theory to address questions related to the analysis of functional data on metric or metric-measure spaces, which we refer to as fields. Formally, fields are viewed as 1-Lipschitz mappings between Polish metric spaces with the domain possibly equipped with a Borel probability measure. We introduce field analogues of the Gromov-Hausdorff, Gromov-Prokhorov, and Gromov-Wasserstein distances, investigate their main properties and provide a characterization of the Gromov-Hausdorff distance in terms of isometric embeddings in a Urysohn universal field. Adapting the notion of distance matrices to fields, we formulate a discrete model, obtain an empirical estimation result that provides a theoretical basis for its use in functional data analysis, and prove a field analogue of Gromov's Reconstruction Theorem. We also investigate field versions of the Vietoris-Rips and neighborhood (or offset) filtrations and prove that they are stable with respect to appropriate metrics.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Geometric inequalities for critical metrics of the volume functional
    H. Baltazar
    R. Batista
    E. Ribeiro
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 1463 - 1480
  • [2] Geometric inequalities for critical metrics of the volume functional
    Baltazar, H.
    Batista, R.
    Ribeiro, E., Jr.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1463 - 1480
  • [3] A novel approach to the analysis of spatial and functional data over complex domains
    Sangalli, Laura M.
    QUALITY ENGINEERING, 2020, 32 (02) : 181 - 190
  • [4] Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains
    Anderson, Keri L.
    Anderson, Jeffrey S.
    Palande, Sourabh
    Wang, Bei
    CONNECTOMICS IN NEUROIMAGING, CNI 2018, 2018, 11083 : 67 - 77
  • [5] Geometric analysis for the metropolis algorithm on Lipschitz domains
    Persi Diaconis
    Gilles Lebeau
    Laurent Michel
    Inventiones mathematicae, 2011, 185 : 239 - 281
  • [6] Spheroidal Domains and Geometric Analysis in Euclidean Space
    Sobczyk, Garret
    CONTEMPORARY MATHEMATICS, 2021, 2 (03): : 189 - 209
  • [7] Geometric analysis for the metropolis algorithm on Lipschitz domains
    Diaconis, Persi
    Lebeau, Gilles
    Michel, Laurent
    INVENTIONES MATHEMATICAE, 2011, 185 (02) : 239 - 281
  • [8] Metrics in symbolic data analysis
    Nieddu, L
    Rizzi, A
    New Developments in Classification and Data Analysis, 2005, : 71 - 78
  • [9] Geometric data analysis for structured data
    Leroux, B
    Rouanet, H
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 4215 - 4215
  • [10] Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains
    Happ, Clara
    Greven, Sonja
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 649 - 659