Unpaired Image-to-Image Translation with Density Changing Regularization

被引:0
|
作者
Xie, Shaoan [1 ]
Ho, Qirong [2 ]
Zhang, Kun [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unpaired image-to-image translation aims to translate an input image to another domain such that the output image looks like an image from another domain while important semantic information are preserved. Inferring the optimal mapping with unpaired data is impossible without making any assumptions. In this paper, we make a density changing assumption where image patches of high probability density should be mapped to patches of high probability density in another domain. Then we propose an efficient way to enforce this assumption: we train the flows as density estimators and penalize the variance of density changes. Despite its simplicity, our method achieves the best performance on benchmark datasets and needs only 56 - 86% of training time of the existing state-of-the-art method. The training and evaluation code are avaliable at https://github.com/Mid-Push/ Decent.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Unpaired Image-to-Image Translation with Shortest Path Regularization
    Xie, Shaoan
    Xu, Yanwu
    Gong, Mingming
    Zhang, Kun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10177 - 10187
  • [2] Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image Translation
    Ohkawa, Takehiko
    Inoue, Naoto
    Kataoka, Hirokatsu
    Inoue, Nakamasa
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 362 - 369
  • [3] Random Reconstructed Unpaired Image-to-Image Translation
    Zhang, Xiaoqin
    Fan, Chenxiang
    Xiao, Zhiheng
    Zhao, Li
    Chen, Huiling
    Chang, Xiaojun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3144 - 3154
  • [4] Unpaired image-to-image translation of structural damage
    Varghese, Subin
    Hoskere, Vedhus
    ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [5] Avoiding Shortcuts in Unpaired Image-to-Image Translation
    Fontanini, Tomaso
    Botti, Filippo
    Bertozzi, Massimo
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 463 - 475
  • [6] Asymmetric GAN for Unpaired Image-to-Image Translation
    Li, Yu
    Tang, Sheng
    Zhang, Rui
    Zhang, Yongdong
    Li, Jintao
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (12) : 5881 - 5896
  • [7] Underwater Image Dehazing via Unpaired Image-to-image Translation
    Cho, Younggun
    Jang, Hyesu
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 605 - 614
  • [8] CycleSAR: SAR Image Despeckling as Unpaired Image-to-Image Translation
    Lattari, Francesco
    Santomarco, Vincenzo
    Santambrogio, Riccardo
    Rucci, Alessio
    Matteucci, Matteo
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] Underwater Image Dehazing via Unpaired Image-to-image Translation
    Younggun Cho
    Hyesu Jang
    Ramavtar Malav
    Gaurav Pandey
    Ayoung Kim
    International Journal of Control, Automation and Systems, 2020, 18 : 605 - 614
  • [10] OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation Meets Regularization by Enhancing
    Zhu, Wenhui
    Qiu, Peijie
    Dumitrascu, Oana M.
    Sobczak, Jacob M.
    Farazi, Mohammad
    Yang, Zhangsihao
    Nandakumar, Keshav
    Wang, Yalin
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 415 - 427