This study examines the predictability of cryptocurrency volatility, a critical challenge given the extreme fluctuations characteristic of these assets. Existing literature highlights the limitations of single-model approaches in predicting such volatility. Using high-frequency data from Binance for ten cryptocurrencies spanning diverse market capitalizations, we systematically evaluate various forecast combination approaches. Our analysis compares traditional linear heterogeneous autoregressive and nonlinear realized volatility models with advanced forecast combination techniques. Results indicate that the winning combination approach significantly improves predictive accuracy over individual models and alternative combination techniques. This enhanced performance arises from its ability to leverage latent groupings among forecasting model weights effectively. Furthermore, we demonstrate the economic value of these improved forecasts, quantifying an average utility gain equivalent to 3.46% of wealth for risk-targeting investors. These findings provide novel insights into volatility forecasting and suggest practical implications for investors seeking to optimize risk management strategies in cryptocurrency markets.
机构:
Univ Salerno, Dept Pharm, Via Giovanni Paolo II 132, I-84084 Salerno, ItalyUniv Salerno, Dept Pharm, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
D'Amato, Valeria
Levantesi, Susanna
论文数: 0引用数: 0
h-index: 0
机构:
Sapienza Univ Rome, Dept Stat, Viale Regina Elena 295, I-00161 Rome, ItalyUniv Salerno, Dept Pharm, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
Levantesi, Susanna
Piscopo, Gabriella
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dept Econ & Stat Sci, Naples, ItalyUniv Salerno, Dept Pharm, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
机构:
Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, Brazil
Queiroz, Rhenan G. S.
David, Sergio A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, Brazil
Univ Sao Paulo, Dept Biosyst Engn, BR-13635900 Pirassununga, BrazilUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, Brazil
机构:
Bina Nusantara Univ, Finance Dept, Fac Econ & Commun, Jakarta, IndonesiaBina Nusantara Univ, Finance Dept, Fac Econ & Commun, Jakarta, Indonesia
Christopher, Amadeo
Deniswara, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Bina Nusantara Univ, Accounting Dept, Fac Econ & Commun, Jakarta, IndonesiaBina Nusantara Univ, Finance Dept, Fac Econ & Commun, Jakarta, Indonesia
Deniswara, Kevin
论文数: 引用数:
h-index:
机构:
Handoko, Bambang Leo
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON E-COMMERCE, E-BUSINESS AND E-GOVERNMENT, ICEEG 2022,
2022,
: 163
-
170