Deployment of Artificial Intelligence in Radiology: Strategies for Success

被引:0
|
作者
Jiang, Sirui [1 ]
Bukhari, Syed M. A. [1 ]
Krishnan, Arjun [2 ]
Bera, Kaustav [1 ]
Sharma, Avishkar [3 ]
Caovan, Danielle [1 ]
Rosipko, Beverly [1 ]
Gupta, Amit [1 ]
机构
[1] Univ Hosp Cleveland Med Ctr, Dept Radiol, 11100 Euclid Ave, Cleveland, OH 44106 USA
[2] Cleveland State Univ, Dept Biol, Cleveland, OH USA
[3] Jefferson Einstein Philadelphia Hosp, Dept Radiol, Philadelphia, PA USA
关键词
artificial intelligence; clinical challenges; integration; radiology; validation; EXTERNAL VALIDITY; VALIDATION; MODELS;
D O I
10.2214/AJR.24.31898
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiology, as a highly technical and information-rich medical specialty, is well suited for artificial intelligence (AI) product development, and many U.S. FDA-cleared AI medical devices are authorized for uses within the specialty. In this Clinical Perspective, we discuss the deployment of AI tools in radiology, exploring regulatory processes, the need for transparency, and other practical challenges. We further highlight the importance of rigorous validation, real-world testing, seamless workflow integration, and end user education. We emphasize the role for continuous feedback and robust monitoring processes, to guide AI tools' adaptation and help ensure sustained performance. Traditional standalone and alternative platform-based approaches to radiology AI implementation are considered. The presented strategies will help achieve successful deployment and fully realize AI's potential benefits in radiology.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Failures Hiding in Success for Artificial Intelligence in Radiology
    Purkayastha, Saptarshi
    Trivedi, Hari
    Gichoya, Judy Wawira
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2021, 18 (03) : 517 - 519
  • [2] The future of radiology augmented with Artificial Intelligence: A strategy for success
    Liew, Charlene
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 102 : 152 - 156
  • [3] Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment
    Ross, J.
    Hammouche, S.
    Chen, Y.
    Rockall, A. G.
    CLINICAL RADIOLOGY, 2024, 79 (05) : 338 - 345
  • [4] Artificial intelligence in radiology
    Ahmed Hosny
    Chintan Parmar
    John Quackenbush
    Lawrence H. Schwartz
    Hugo J. W. L. Aerts
    Nature Reviews Cancer, 2018, 18 : 500 - 510
  • [5] Artificial intelligence in radiology
    Faggioni, Lorenzo
    Coppola, Francesca
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 12
  • [6] Artificial intelligence in radiology
    Hosny, Ahmed
    Parmar, Chintan
    Quackenbush, John
    Schwartz, Lawrence H.
    Aerts, Hugo J. W. L.
    NATURE REVIEWS CANCER, 2018, 18 (08) : 500 - 510
  • [7] The time is now: making the case for a UK registry of deployment of radiology artificial intelligence applications
    Silkens, M. E. W. M.
    Ross, J.
    Hall, M.
    Scarbrough, H.
    Rockall, A.
    CLINICAL RADIOLOGY, 2023, 78 (02) : 107 - 114
  • [8] Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success
    Thrall, James H.
    Li, Xiang
    Li, Quanzheng
    Cruz, Cinthia
    Do, Synho
    Dreyer, Keith
    Brink, James
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) : 504 - 508
  • [9] Workforce Crisis in Radiology in the UK and the Strategies to Deal With It: Is Artificial Intelligence the Saviour?
    Kalidindi, Sadhana
    Gandhi, Sanjay
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (08)
  • [10] Artificial intelligence in radiology and radiotherapy
    Xu, Lina
    Busch, Felix
    Adams, Lisa C.
    Bressem, Keno K.
    ONKOLOGIE, 2024, 30 (05): : 353 - 361