Lauri Ingman at SemEval-2023 Task 4: A Chain Classifier for Identifying Human Values behind Arguments

被引:0
|
作者
Paulissen, Spencer [1 ]
Wendt, Caroline J. [1 ]
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying expressions of human values in textual data is a crucial albeit complicated challenge, not least because ethics are highly variable, often implicit, and transcend circumstance. Opinions, arguments, and the like are generally founded upon more than one guiding principle, which are not necessarily independent. As such, little is known about how to classify and predict moral undertones in natural language sequences. Here, we describe and present a solution to ValueEval, our shared contribution to SemEval 2023 Task 4. Our research design focuses on investigating chain classifier architectures with pretrained contextualized embeddings to detect 20 different human values in written arguments. We show that our best model substantially surpasses the classification performance of the baseline method established in prior work. We discuss limitations to our approach and outline promising directions for future work.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 35 条
  • [1] SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments
    Kiesel, Johannes
    Alshomary, Milad
    Mirzakhmedova, Nailia
    Heinrich, Maximilian
    Handke, Nicolas
    Wachsmuth, Henning
    Stein, Benno
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 2287 - 2303
  • [2] Tenzin-Gyatso at SemEval-2023 Task 4: Identifying Human Values behind Arguments using DeBERTa
    Kandru, Pavan
    Singh, Bhavyajeet
    Maity, Ankita
    Hari, Aditya
    Varma, Vasudeva
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 2062 - 2066
  • [3] Epicurus at SemEval-2023 Task 4: Improving Prediction of Human Values behind Arguments by Leveraging Their Definitions
    Fang, Christian
    Fang, Qixiang
    Dong Nguyen
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 221 - 229
  • [4] Rudolf Christoph Eucken at SemEval-2023 Task 4: An Ensemble Approach for Identifying Human Values from Arguments
    Saha, Sougata
    Srihari, Rohini
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 660 - 663
  • [5] Aristoxenus at SemEval-2023 Task 4: A Domain-Adapted Ensemble Approach to the Identification of Human Values behind Arguments
    Zaikis, Dimitrios
    Stefanidis, Stefanos D.
    Anagnostopoulos, Konstantinos
    Vlahavas, Ioannis
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1037 - 1043
  • [6] Tubingen at SemEval-2023 Task 4: What can Stance Tell? A Computational Study on Detecting Human Values behind Arguments
    Can, Fidan
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1763 - 1768
  • [7] I2C Huelva at SemEval-2023 Task 4: A Resampling and Transformers Approach to Identify Human Values behind Arguments
    El Balima Cordero, Nordin
    Mata Vazquez, Jacinto
    Pachon Alvarez, Victoria
    Pichardo Estevez, Abel
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1382 - 1387
  • [8] StFX-NLP at SemEval-2023 Task 4: Unsupervised and supervised approaches to detecting human values in arguments
    Heavey, Ethan
    King, Milton
    Hughes, James
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 205 - 211
  • [9] Augustine Of Hippo at SemEval-2023 Task 4: An Explainable Knowledge Extraction Method to Identify Human Values in Arguments with SuperASKE
    Ferrara, Alfio
    Picascia, Sergio
    Rocchetti, Elisabetta
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1044 - 1053
  • [10] Adam-Smith at SemEval-2023 Task 4: Discovering Human Values in Arguments with Ensembles of Transformer-based Models
    Schroter, Daniel
    Dementieva, Daryna
    Groh, Georg
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 532 - 541