Quantitative Characterization of Water Fracturing and Supercritical CO2 Fracturing in Continental Shale: Synergistic Effects of Stress and Fluid Type

被引:0
|
作者
Xing, Jianpeng [1 ]
Li, Xiao [1 ,2 ]
Guo, Peng [1 ]
Sun, Xiukuo [2 ]
Liu, Xianyang [3 ,4 ]
Chen, Hao [5 ]
Mei, Qiliang [3 ]
Zhou, Xinping [4 ]
Zhang, Kaiqiang [1 ]
机构
[1] Peking Univ, Inst Energy, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
[3] Natl Engn Lab Explorat & Dev Low Permeabil Oil & G, Xian 710018, Peoples R China
[4] PetroChina Changqing Oilfield Co, Explorat & Dev Res Inst, Xian 710018, Peoples R China
[5] China Univ Petr, Coll Safety & Ocean Engn, Beijing 102249, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE; PROPAGATION; GAS; INITIATION; RESOURCES;
D O I
10.1021/acs.energyfuels.4c05340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To elucidate the effects of fluid viscosity and stress on the characteristics of hydraulic fractures, a series of triaxial laboratory experiments were performed on continental shale using water and supercritical CO2 (Sc-CO2). Utilizing advanced computed tomography scanning and three-dimensional reconstruction techniques, we quantitatively assessed the fractal dimension, connectivity, and volume of the induced hydraulic fractures. To provide a rigorous quantitative evaluation of the hydraulic fracturing effectiveness, we introduced a novel comprehensive fracturing index (CFI). Our experimental results reveal that the bedding planes of the Chang73 Formation continental shale significantly influence the morphology of hydraulic fractures. Under consistent differential stress conditions, Sc-CO2 preferentially initiates fractures along the bedding planes, exhibiting limited vertical propagation. Notably, a higher differential stress is required to promote vertical propagation of the fractures, with approximately 30 MPa necessary for Sc-CO2 in this study to induce vertical propagation. This study represents the first detailed analysis of the fracturing performance of continental shale under various confining pressures using Sc-CO2. At a confining pressure of 20 MPa, the height of hydraulic fractures was only 14.5% of that observed without a confining pressure under the same differential stress. Through the application of the proposed CFI, we observed that, under identical differential stress conditions, the CFI for Sc-CO2 fracturing was lower compared to that for water fracturing. With increasing differential stress, the CFI for water-based fracturing exhibited an initial increase, followed by a decrease. When the differential stress was sufficiently high to make fractures to propagate vertically, the complexity of the fracture morphology induced by Sc-CO2 increased significantly, leading to a notable rise in CFI. This research provides critical empirical insights for the selection of fracturing fluids and the optimization of fracturing techniques for continental shale formations.
引用
收藏
页码:3422 / 3432
页数:11
相关论文
共 50 条
  • [41] Experimental evaluation and thickening mechanism of long tube in supercritical CO2 fracturing fluid tackifier
    Huang, Qian
    Fu, Meilong
    Zhao, Zhongcong
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (06): : 2939 - 2946
  • [42] Wettability Alteration Study of Supercritical CO2 Fracturing Fluid on Low Permeability Oil Reservoir
    Sun, Xin
    Dai, Caili
    Sun, Yongpeng
    Du, Mingyong
    Wang, Tao
    Zou, Chenwei
    He, Jiayuan
    ENERGY & FUELS, 2017, 31 (12) : 13364 - 13373
  • [43] Application of CO2 fracturing technology for terrestrial shale gas reservoirs
    Wang, X. (sxycpcwxz@126.com), 1600, Natural Gas Industry Journal Agency (34):
  • [44] Assessment of CO2 fracturing in China's shale oil reservoir: Fracturing effectiveness and carbon storage potential
    Shi, Wenrui
    Zhu, Ling
    Guo, Meiyu
    Huang, Zisang
    Wang, Ganlu
    Lin, Lijie
    He, Li
    Liao, Yong
    He, Haoran
    Gong, Junshi
    RESOURCES CONSERVATION AND RECYCLING, 2023, 197
  • [45] Study on mechanism of Pre-CO2 fracturing and analysis of sensitive factors for CO2 fracturing backflow in shale oil reservoirs
    Zhou, Xiaofeng
    Wang, Qingzhao
    Wei, Jianguang
    Cheng, Haoran
    Huang, Bin
    Shang, Demiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 117 : 409 - 419
  • [46] Friction Performance of BCG-CO2 Fracturing Fluid for Shale Gas
    Wang, Shuzhong
    Luo, Xiangrong
    Jing, Zefeng
    2018 INTERNATIONAL CONFERENCE OF GREEN BUILDINGS AND ENVIRONMENTAL MANAGEMENT (GBEM 2018), 2018, 186
  • [47] Adsorption behavior and mechanism analysis of siloxane thickener for CO2 fracturing fluid on shallow shale soil
    Li, Qiang
    Wang, Fuling
    Wang, Yanling
    Bai, Baojun
    Zhang, Jinyan
    Lili, Cao
    Sun, Quan
    Wang, Yong
    Forson, Kobina
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 376
  • [48] Study on Filtration and Damage Characteristics of Modified Dry CO2 Fracturing Fluid in Shale Gas Reservoir
    Xu, Guixi
    Wang, Shuzhong
    Luo, Xiangrong
    Jing, Zefeng
    2017 3RD INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE (EEMS 2017), 2017, 94
  • [49] Rheological Properties of BCG-CO2 Fracturing Fluid for Shale Gas
    Wang, Shuzhong
    Luo, Xiangrong
    Jing, Zefeng
    2018 INTERNATIONAL CONFERENCE OF GREEN BUILDINGS AND ENVIRONMENTAL MANAGEMENT (GBEM 2018), 2018, 186
  • [50] Enhanced Oil Recovery and CO2 Storage Performance in Continental Shale Oil Reservoirs Using CO2 Pre-Injection Fracturing
    Zhang, An
    Lei, Yalin
    Zhang, Chenjun
    Tao, Jiaping
    PROCESSES, 2023, 11 (08)