Joint subspace learning and subspace clustering based unsupervised feature selection

被引:0
|
作者
Xiao, Zijian [1 ,2 ,3 ,4 ]
Chen, Hongmei [1 ,2 ,3 ,4 ]
Mi, Yong [1 ,2 ,3 ,4 ]
Luo, Chuan [5 ]
Horng, Shi-Jinn [6 ]
Li, Tianrui [1 ,2 ,3 ,4 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[2] Minist Educ, Engn Res Ctr Sustainable Urban Intelligent Transpo, Chengdu 611756, Peoples R China
[3] Southwest Jiaotong Univ, Mfg Ind Chains Collaborat & Informat Support Techn, Chengdu 611756, Peoples R China
[4] Southwest Jiaotong Univ, Natl Engn Lab Integrated Transportat Big Data Appl, Chengdu 611756, Peoples R China
[5] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[6] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
关键词
Unsupervised feature selection; Subspace learning; Subspace clustering; Adaptive graph learning;
D O I
10.1016/j.neucom.2025.129885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised feature selection (UFS) has become a focal point of extensive research due to its ability to reduce the dimensionality of unlabeled data. Currently, many UFS methods based on subspace learning embed multiple graph regularization terms to preserve the local similarity structure of samples or features and rarely consider exploring global structure simultaneously, such as the self-representation structure between features and the potential clustering structure of samples. We propose a novel UFS model based on subspace learning and subspace orthogonal basis clustering (JSLSC) to address this problem. First, through robust subspace learning, JSLSC explores the self-representation information between the selected features and the original feature space. Features' local and global structures are learned through feature selection and self- representation structure learning. Secondly, orthogonal basis clustering is introduced to learn the potential clustering structure in the low-dimensional sample space, thus enabling subspace clustering. Thirdly, hard- constrained graph structure learning is introduced to adaptively maintain the local structural consistency between low-dimensional samples and original samples. Finally, an optimization algorithm and convergence proof are proposed, and the superiority of the JSLSC is demonstrated through comparative experiments on nine real datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Subspace Clustering via Joint Unsupervised Feature Selection
    Dong, Wenhua
    Wu, Xiao-Jun
    Li, Hui
    Feng, Zhen-Hua
    Kittler, Josef
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3892 - 3898
  • [2] Unsupervised feature selection based on adaptive similarity learning and subspace clustering
    Parsa, Mohsen Ghassemi
    Zare, Hadi
    Ghatee, Mehdi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95 (95)
  • [3] Subspace clustering guided unsupervised feature selection
    Zhu, Pengfei
    Zhu, Wencheng
    Hu, Qinghua
    Zhang, Changqing
    Zuo, Wangmeng
    PATTERN RECOGNITION, 2017, 66 : 364 - 374
  • [4] Joint self-representation and subspace learning for unsupervised feature selection
    Ruili Wang
    Ming Zong
    World Wide Web, 2018, 21 : 1745 - 1758
  • [5] Joint self-representation and subspace learning for unsupervised feature selection
    Wang, Ruili
    Zong, Ming
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2018, 21 (06): : 1745 - 1758
  • [6] Joint feature selection and optimal bipartite graph learning for subspace clustering
    Mei, Shikun
    Zhao, Wenhui
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    NEURAL NETWORKS, 2023, 164 : 408 - 418
  • [7] Robust Sparse Subspace Learning for Unsupervised Feature Selection
    Wang, Feng
    Rao, Qi
    Zhang, Yongquan
    Chen, Xu
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4205 - 4212
  • [8] Subspace clustering by simultaneously feature selection and similarity learning
    Zhong, Guo
    Pun, Chi-Man
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [9] Robust Unsupervised Feature Selection by Nonnegative Sparse Subspace Learning
    Zheng, Wei
    Yan, Hui
    Yang, Jian
    Yang, Jingyu
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3615 - 3620
  • [10] UNSUPERVISED FEATURE SELECTION BY NONNEGATIVE SPARSITY ADAPTIVE SUBSPACE LEARNING
    Zhou, Nan
    Cheng, Hong
    Zheng, Ya-Li
    He, Liang-Tian
    Pedrycz, Witold
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 18 - 24