Estimating Uncertainty of Geographic Atrophy Segmentations with Bayesian Deep Learning

被引:0
|
作者
Spaide, Theodore [1 ,2 ,3 ]
Rajesh, Anand E. [1 ,2 ]
Gim, Nayoon [1 ,2 ,4 ]
Blazes, Marian [1 ,2 ]
Lee, Cecilia S. [1 ,2 ]
Macivannan, Niranchana [5 ]
Lee, Gary [5 ]
Lewis, Warren [5 ]
Salehi, Ali [5 ]
de Sisternes, Luis [6 ]
Herrera, Gissel [7 ]
Shen, Mengxi [7 ]
Gregori, Giovanni [7 ]
Rosenfeld, Philip J. [7 ]
Pramil, Varsha [8 ,9 ]
Waheed, Nadia [8 ,9 ]
Wu, Yue [1 ,2 ]
Zhang, Qinqin [5 ]
Lee, Aaron Y. [1 ,2 ]
机构
[1] Univ Washington, Dept Ophthalmol, Seattle, WA USA
[2] Roger & Angie Karalis Retina Ctr, Seattle, WA USA
[3] Topcon Healthcare, Oakland, NJ USA
[4] Univ Washington, Dept Bioengn, Seattle, WA USA
[5] Carl Zeiss Meditec Inc, Dublin, CA USA
[6] Twenty Twenty Therapeut LLC, San Francisco, CA USA
[7] Univ Miami, Bascom Palmer Eye Inst BPEI, Miller Sch Med, Dept Ophthalmol, Miami, FL USA
[8] Tufts Univ, Sch Med, Boston, MA USA
[9] New England Eye Ctr, Tufts New England Med Ctr, Boston, MA USA
来源
OPHTHALMOLOGY SCIENCE | 2025年 / 5卷 / 01期
基金
美国国家卫生研究院;
关键词
Age-Related macular degeneration (AMD); Bayesian deep learning; Geographic atrophy (GA); Model uncertainty; OCT;
D O I
10.1016/j.xops.2024.100587
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To apply methods for quantifying uncertainty of deep learning segmentation of geographic atrophy (GA). Design: Retrospective analysis of OCT images and model comparison. Participants: One hundred twenty-six eyes from 87 participants with GA in the SWAGGER cohort of the Nonexudative Age-Related Macular Degeneration Imaged with Swept-Source OCT (SS-OCT) study. Methods: The manual segmentations of GA lesions were conducted on structural subretinal pigment epithelium en face images from the SS-OCT images. Models were developed for 2 approximate Bayesian deep learning techniques, Monte Carlo dropout and ensemble, to assess the uncertainty of GA semantic segmentation and compared to a traditional deep learning model. Main Outcome Measures: Model performance (Dice score) was compared. Uncertainty was calculated using the formula for Shannon Entropy. Results: The output of both Bayesian technique models showed a greater number of pixels with high entropy than the standard model. Dice scores for the Monte Carlo dropout method (0.90, 95% confidence interval 0.87-0.93) and the ensemble method (0.88, 95% confidence interval 0.85-0.91) were significantly higher (P < 0.001) than for the traditional model (0.82, 95% confidence interval 0.78-0.86). Conclusions: Quantifying the uncertainty in a prediction of GA may improve trustworthiness of the models and aid clinicians in decision-making. The Bayesian deep learning techniques generated pixel-wise estimates of model uncertainty for segmentation, while also improving model performance compared with traditionally trained deep learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantifying Uncertainty of Deep Learning Models for the Segmentation of Geographic Atrophy
    Spaide, Theodore
    Owen, Julia
    De Sisternes, Luis
    Lewis, Warren
    Manivannan, Niranchana
    Pramil, Varsha
    Sheikh, Harris Asad
    Waheed, Nadia K.
    Lee, Cecilia S.
    Lee, Aaron Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [2] Deep learning in geographic atrophy: the best is yet to come
    Biarnes, Marc
    LANCET DIGITAL HEALTH, 2021, 3 (10): : E617 - E618
  • [3] Geographic Atrophy Segmentation Using Multimodal Deep Learning
    Spaide, Theodore
    Jiang, Jiaxiang
    Patil, Jasmine
    Anegondi, Neha
    Steffen, Verena
    Kawczynski, Michael G.
    Newton, Elizabeth M.
    Rabe, Christina
    Gao, Simon S.
    Lee, Aaron Y.
    Holz, Frank G.
    Sadda, Srinivas
    Schmitz-Valckenberg, Steffen
    Ferrara, Daniela
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (07):
  • [4] A Simple Baseline for Bayesian Uncertainty in Deep Learning
    Maddox, Wesley J.
    Garipov, Timur
    Izmailov, Pavel
    Vetrov, Dmitry
    Wilson, Andrew Gordon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Uncertainty in Bayesian deep label distribution learning
    Zheng, Rui
    Zhang, Shulin
    Liu, Lei
    Luo, Yuhao
    Sun, Mingzhai
    APPLIED SOFT COMPUTING, 2021, 101
  • [6] Training Size Effect on Deep Learning Models for Geographic Atrophy
    Slater, Robert
    Banghart, Mark
    Channa, Roomasa
    Blodi, Barbara A.
    Fong, Donald S.
    Domalpally, Amitha
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [7] Uncertainty in deep learning-based automatic segmentations of head and neck cancer tumors
    Bao Ngoc Huynh
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Dale, Einar
    Malinen, Eirik
    Futsaether, Cecilia Marie
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3034 - S3037
  • [8] Prediction of Geographic Atrophy Enlargement using Various Deep Learning Approaches
    Domalpally, Amitha
    Slater, Robert
    Banghart, Mark
    Channa, Roomasa
    Fong, Donald S.
    Blodi, Barbara A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [9] Deep learning identifies hyperreflective foci as predictors of geographic atrophy progression
    Schmidt-Erfurth, Ursula
    Waldstein, Sebastian M.
    Grechenig, Christoph
    Reiter, Gregor Sebastian
    Baratsits, Magdalena
    Bui, Patricia
    Fabianska, Maria
    Arikan, Mustafa
    Sadeghipour, Amir
    Bogunovic, Hrvoje
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [10] Automatic segmentation of geographic atrophy in OCT scans using deep learning
    Cheng, Yuxuan
    Chu, Zhongdi
    Shen, Mengxi
    Laiginhas, Rita
    Liu, Jeremy
    Shi, Yingying
    Li, Jianqing
    Zhou, Hao
    Zhang, Qinqin
    Gregori, Giovanni
    Rosenfeld, Philip J.
    Wang, Ruikang K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)