Influence of carbon and fluorine on potassium niobate anode material for sodium-ion battery applications

被引:0
|
作者
Rao, Y. Bhaskara [1 ]
Ohlin, C. Andre [1 ]
机构
[1] Umea Univ, Dept Chem, S-90187 Umea, Sweden
来源
SUSTAINABLE ENERGY & FUELS | 2025年 / 9卷 / 08期
关键词
D O I
10.1039/d5se00071h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium niobate, KNb3O8 (KNO) material is investigated as a potential anode material for sodium ion batteries owing to its layered structure and excellent electrochemical stability. However, the poor electrical conductivity of the material is addressed by surface modification with fluorine-doped carbon utilizing polyvinylidene fluoride as both a carbon and fluorine source. High resolution transmission electron microscopy results reveal that the active material is successfully embedded in the carbon matrix and X-ray photoelectron spectroscopy analysis confirms the tight attachment of carbon and fluorine bonding with the bulk material. As a result, the KNO@F-C material delivers a high reversible capacity of 173 mA h g(-1) at a current density of 10 mA g(-1), a superior rate performance of 137 mA h g(-1) at 200 mA g(-1) and a remarkable capacitance recovery rate (>100%). In addition, the coated material exhibits 90% capacity retention, demonstrating its long term cycling stability even after 200 cycles. The enhanced electrochemical performance of the coated sample over the pristine material is attributed to its large specific surface area, and a high Na+-ion diffusion coefficient, which facilitates a rapid transfer of electrons and improves grain-to-grain conductivity.
引用
收藏
页码:2217 / 2227
页数:11
相关论文
共 50 条
  • [1] Holey Graphene for Sodium-Ion Battery Anode Material
    Hao, Yanan
    Cai, Ziming
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (11)
  • [2] Scotch Pine Cones-Derived Hard Carbon as an Anode Material for Sodium-Ion Battery Applications
    Rao, Y. Bhaskara
    Sundman, Ola
    Holmboe, Michael
    Tavajohi, Naser
    Ohlin, C. Andre
    ACS OMEGA, 2025,
  • [3] Scotch Pine Cones-Derived Hard Carbon as an Anode Material for Sodium-Ion Battery Applications
    Rao, Y. Bhaskara
    Sundman, Ola
    Holmboe, Michael
    Tavajohi, Naser
    Ohlin, C. Andre
    ACS OMEGA, 2025, 10 (11): : 11158 - 11167
  • [4] Zinc-regulated hard carbon as a sodium-ion battery anode material
    Song, Zhenqi
    Ma, Yanjiao
    Wang, Ke
    Liu, Chengyu
    Wu, Aojie
    Cheng, Xinbing
    Wang, Tao
    Wang, Faxing
    Ma, Yuan
    Wu, Yuping
    JOURNAL OF POWER SOURCES, 2025, 640
  • [5] Coal-Based Amorphous Carbon as Economical Anode Material for Sodium-Ion Battery
    Zhuang, Zhiheng
    Cui, Yongli
    Zhu, Honggang
    Shi, Yueli
    Zhuang, Quanchao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (10) : A2225 - A2232
  • [6] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Kong, Lingchen
    Li, Yu
    Feng, Wei
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (02) : 123 - 131
  • [7] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University, 2022, 28 (02) : 123 - 131
  • [8] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University, 2022, 28 : 123 - 131
  • [9] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University , 2022, (02) : 123 - 131
  • [10] Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery
    Zhang Lingling
    Dong Huanhuan
    He Xiangxi
    Li Li
    Li Lin
    Wu Xingqiao
    Chou Shulei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (01):