Simultaneous localization and mapping (SLAM) is crucial for autonomous driving, drone navigation, and robot localization, relying on efficient point cloud registration and loop closure detection. Traditional Normal Distributions Transform (NDT) odometry frameworks provide robust solutions but struggle with real-time performance due to the high computational complexity of processing large-scale point clouds. This paper introduces an improved NDT-based LiDAR odometry framework to address these challenges. The proposed method enhances computational efficiency and registration accuracy by introducing a unified feature point cloud framework that integrates planar and edge features, enabling more accurate and efficient inter-frame matching. To further improve loop closure detection, a parallel hybrid approach combining Radius Search and Scan Context is developed, which significantly enhances robustness and accuracy. Additionally, feature-based point cloud registration is seamlessly integrated with full cloud mapping in global optimization, ensuring high-precision pose estimation and detailed environmental reconstruction. Experiments on both public datasets and real-world environments validate the effectiveness of the proposed framework. Compared with traditional NDT, our method achieves trajectory estimation accuracy increases of 35.59% and over 35%, respectively, with and without loop detection. The average registration time is reduced by 66.7%, memory usage is decreased by 23.16%, and CPU usage drops by 19.25%. These results surpass those of existing SLAM systems, such as LOAM. The proposed method demonstrates superior robustness, enabling reliable pose estimation and map construction in dynamic, complex settings.