DiffusionEIT: Diffusion Model for Electrical Impedance Tomography
被引:0
|
作者:
Liu, Jinzhen
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
Liu, Jinzhen
[1
]
Shi, Fangming
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Key Lab Intelligent Control Elect Equipment, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
Shi, Fangming
[2
]
Xiong, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Artificial Intelligence, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
Xiong, Hui
[3
]
Zhou, Yapeng
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Key Lab Intelligent Control Elect Equipment, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
Zhou, Yapeng
[2
]
机构:
[1] Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Key Lab Intelligent Control Elect Equipment, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Sch Artificial Intelligence, Tianjin 300387, Peoples R China
Electrical impedance tomography (EIT) is considered to be an imaging modality that can accomplish noninvasive continuous monitoring due to its low-cost and low-injury properties. Recently, various machine learning algorithms have been proposed for EIT. However, artifacts that affect the smoothness of the reconstructed image persist in many of these algorithms due to their neural network structure which directly maps voltage to conductivity. We propose a diffusion model based EIT (DiffusionEIT) method for reconstructing smooth high-resolution images in this article. DiffusionEIT iteratively denoises the initial input Gaussian noise to reconstruct an ordered conductivity distribution image, and innovatively uses a cross-modal mechanism based on the transformer structure to fuse the voltage data into the image generation process. The efficacy of DiffusionEIT's image generation capability and cross-modal mechanism is substantiated by simulated data. The algorithm's resistance to noise is tested by voltage data with different noise levels, and finally, experiments are designed to evaluate the algorithm's usability in real-world situations. The results show that DiffusionEIT can obtain a high level of image reconstruction capability, possesses excellent noise immunity and is a new idea for EIT by generative models.
机构:
Univ Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, MalaysiaUniv Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, Malaysia
Chin, Renee Ka Yin
Kho, Gavin Thong Xian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, MalaysiaUniv Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, Malaysia
Kho, Gavin Thong Xian
Tham, Heng Jin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, MalaysiaUniv Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, Malaysia
Tham, Heng Jin
论文数: 引用数:
h-index:
机构:
Chua, Bih Lii
论文数: 引用数:
h-index:
机构:
Teo, Kenneth Tze Kin
Ng, Kwan Hoong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Biomed Imaging, Kuala Lumpur, Malaysia
Univ Malaya, Res Imaging Ctr, Kuala Lumpur, MalaysiaUniv Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, Malaysia
机构:
Henares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Univ Francisco de Vitoria, Fac Ciencias Salud, Grp Invest Patol Crit, Madrid, SpainHenares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Lobo, Beatriz
Hermosa, Cecilia
论文数: 0引用数: 0
h-index: 0
机构:
Henares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Univ Francisco de Vitoria, Fac Ciencias Salud, Grp Invest Patol Crit, Madrid, SpainHenares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Hermosa, Cecilia
Abella, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Henares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Univ Francisco de Vitoria, Fac Ciencias Salud, Grp Invest Patol Crit, Madrid, SpainHenares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Abella, Ana
Gordo, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Henares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
Univ Francisco de Vitoria, Fac Ciencias Salud, Grp Invest Patol Crit, Madrid, SpainHenares Univ Hosp, Intens Care Unit, Coslada Madrid, Spain
机构:
Georg August Univ, Dept Anesthesiol Emergency & Intens Care Med, Robert Koch Str 40, D-37075 Gottingen, GermanyGeorg August Univ, Dept Anesthesiol Emergency & Intens Care Med, Robert Koch Str 40, D-37075 Gottingen, Germany