Advancements in direct recycling technologies for lithium-ion battery cathodes: Overcoming challenges in cathode regeneration

被引:0
|
作者
Natarajan, Subramanian [1 ,2 ]
Noda, Suguru [1 ,2 ]
机构
[1] Waseda Univ, Dept Appl Chem, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Waseda Univ, Waseda Res Inst Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
Lithium-ion batteries; Cathodes; Direct recycling; Relithiation; Sustainability; SUPERCRITICAL CARBON-DIOXIDE; POSITIVE-ELECTRODE MATERIALS; VALUABLE METALS; ACTIVE MATERIAL; MECHANOCHEMICAL ACTIVATION; HEAT-TREATMENT; ORGANIC-ACIDS; TARTARIC ACID; RECOVERY; LI;
D O I
10.1016/j.mser.2025.100976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion batteries (LIBs) currently dominate the energy storage landscape, generating a substantial volume of valuable waste resources at the end of their life and presenting additional recycling challenges and environmental hazards. Emerging direct recycling technologies offer promising solutions by rejuvenating spent electrode materials through simplified processes and surpassing traditional pyrometallurgical and hydrometallurgical technologies in terms of energy savings and carbon footprint reduction. The regeneration of high-value cathode materials has become especially interesting worldwide for reuse in the same battery applications, reducing dependence on raw materials and alleviating global supply chain burdens. Therefore, this review analyzes the current research in direct recycling technology, particularly relithiation techniques for restoring cathode performance without structural destruction, and sequential extraction steps and reuse in a straightforward manner. Advancements in direct recycling technologies such as chemical relithiation, electrochemical relithiation, solidstate sintering, and molten salts are discussed in detail for different cathode chemistries. Finally, the challenges present in direct recycling technologies are addressed to promote the regeneration process at an industrial level.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials
    Juan Wu
    Li Xiao
    Li Shen
    Jian-Jun Ran
    Hui Zhong
    Yi-Rong Zhu
    Han Chen
    Rare Metals, 2024, 43 : 879 - 899
  • [2] Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials
    Juan Wu
    Li Xiao
    Li Shen
    Jian-Jun Ran
    Hui Zhong
    Yi-Rong Zhu
    Han Chen
    Rare Metals, 2024, 43 (03) : 879 - 899
  • [3] Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials
    Wu, Juan
    Xiao, Li
    Shen, Li
    Ran, Jian-Jun
    Zhong, Hui
    Zhu, Yi-Rong
    Chen, Han
    RARE METALS, 2024, 43 (03) : 879 - 899
  • [4] Seeking direct cathode regeneration for more efficient lithium-ion battery recycling
    Gao, Hongpeng
    Tran Duc
    Chen, Zheng
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [5] Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials
    Wang, Guange
    Zhang, Huaning
    Wu, Tong
    Liu, Borui
    Huang, Qing
    Su, Yuefeng
    PROGRESS IN CHEMISTRY, 2020, 32 (12) : 2064 - 2072
  • [6] Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing
    Xu, Panpan
    Dai, Qiang
    Gao, Hongpeng
    Liu, Haodong
    Zhang, Minghao
    Li, Mingqian
    Chen, Yan
    An, Ke
    Meng, Ying Shirley
    Liu, Ping
    Li, Yanran
    Spangenberger, Jeffrey S.
    Gaines, Linda
    Lu, Jun
    Chen, Zheng
    JOULE, 2020, 4 (12) : 2609 - 2626
  • [7] Recycling of lithium ion battery cathodes by targeted regeneration
    Song, Hui
    Zhang, Zhongyi
    Zhang, Lifu
    Dong, Wenjuan
    Ding, Yang
    Wang, Zhifu
    Wang, Hao
    Deng, Heming
    Cheng, Qi
    IONICS, 2023, 29 (09) : 3543 - 3547
  • [8] Recycling of lithium ion battery cathodes by targeted regeneration
    Hui Song
    Zhongyi Zhang
    Lifu Zhang
    Wenjuan Dong
    Yang Ding
    Zhifu Wang
    Hao Wang
    Heming Deng
    Qi Cheng
    Ionics, 2023, 29 : 3543 - 3547
  • [9] Direct recycling of spent lithium-ion battery cathodes inspired by the polymerization of dopamine
    Zhu, Xuhui
    Gong, Mengqi
    Mo, Ran
    Luo, Siyuan
    Chen, Junting
    Ren, Xueqi
    Yan, Xiao
    Long, Zhouyang
    Yang, Shun
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [10] Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt
    Guanjun Ji
    Junxiong Wang
    Zheng Liang
    Kai Jia
    Jun Ma
    Zhaofeng Zhuang
    Guangmin Zhou
    Hui-Ming Cheng
    Nature Communications, 14