Highly Efficient and Stable Perovskite Solar Cells via a Multifunctional Curcumin-Modified Buried Interface

被引:0
|
作者
Wu, Xianhu [1 ]
Bi, Jieyu [1 ]
Cui, Guanglei [1 ]
Jiang, Jiaxin [1 ]
Tang, Hailong [1 ]
Liu, Nian [1 ]
Xia, Gaojie [1 ]
Sun, Jilong [1 ]
Lu, Ning [1 ]
Li, Ping [2 ]
Zhao, Chunyi [1 ]
Zuo, Zewen [1 ]
Gu, Min [3 ]
机构
[1] Anhui Normal Univ, Coll Phys & Elect Informat, Anhui Prov Key Lab Control & Applicat Optoelect In, Key Lab Funct Mol Solids, Wuhu 241002, Peoples R China
[2] Zunyi Normal Univ, Sch Phys & Elect Sci, Zunyi 563006, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
来源
ACS PHOTONICS | 2025年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
perovskite solar cells; curcumin; multifunctionalmolecule; buried interface modification; defectpassivation;
D O I
10.1021/acsphotonics.4c02096
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The buried interface between the electron transport layer and the perovskite layer suffers from severe interface defects and imperfect energy level alignment. To address this issue, this study employs a multifunctional organic molecule, curcumin, to modify the interface between SnO2 and the perovskite layer. The curcumin effectively passivates the defects on both sides of the interface, reducing -OH and oxygen vacancy defects on the SnO2 surface and passivating uncoordinated Pb2+ in the perovskite layer. Through density functional theory calculations, it was found that CM modification at the buried interface increased the defect formation energies of deep (VPb and PbI) and shallow (VI) defects at the bottom of the perovskite film. This results in a more compatible energy level alignment and lower defect density at the interface, enhancing carrier transport across it. Consequently, the devices based on curcumin achieve an impressive champion power conversion efficiency (PCE) of 24.46%, compared to 22.03% for control devices. The device retains 90.42% of its initial PCE after 1000 h at 25 degrees C and 50 +/- 5% relative humidity. This work demonstrates a green, hydrophobic, and efficient molecular modification method for the buried interface, laying the foundation for the development of high-performance and stable perovskite solar cells.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 50 条
  • [1] A multifunctional chemical linker in a buried interface for stable and efficient planar perovskite solar cells
    Geng, Quanming
    Xu, Zong
    Song, Wenwu
    Hu, Yanqiang
    Sun, Guangping
    Wang, Jin
    Wang, Minmin
    Sun, Tongming
    Tang, Yanfeng
    Zhang, Shufang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (36) : 21697 - 21704
  • [2] Multifunctional Biomolecules Bridging a Buried Interface for Efficient Perovskite Solar Cells
    Wang, Yifei
    Li, Yan
    Deng, Fei
    Song, Xiangfei
    Zhang, Wanqi
    Tao, Xia
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) : 20533 - 20541
  • [3] Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells
    Cai, Yuan
    Cui, Jian
    Chen, Ming
    Zhang, Miaomiao
    Han, Yu
    Qian, Fang
    Zhao, Huan
    Yang, Shaomin
    Yang, Zhou
    Bian, Hongtao
    Wang, Tao
    Guo, Kunpeng
    Cai, Molang
    Dai, Songyuan
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (07)
  • [4] Multifunctional molecular linker on buried interface for efficient and stable cesium-formamidinium perovskite solar cells
    Wu, Yan
    Wang, Yu
    Song, Jiaxing
    Wu, Xianrui
    Zhao, Yongkang
    Li, Huinan
    Yin, Xinxing
    Hu, Lin
    Su, Zhen
    Jin, Yingzhi
    Zhang, Xinyu
    Cheng, Yongliang
    Li, Zaifang
    APPLIED PHYSICS LETTERS, 2024, 124 (07)
  • [5] Multifunctional buried interface modification for efficient and stable SnO2-based perovskite solar cells
    Wu, Rui
    Meng, Junhua
    Shi, Yiming
    Xia, Zhengchang
    Yan, Chunxia
    Zhang, Lisheng
    Liu, Wenkang
    Zhao, Jinliang
    Deng, Jinxiang
    Zhang, Xingwang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (21) : 12672 - 12680
  • [6] Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material
    Zhou, Junjie
    Tan, Liguo
    Liu, Yue
    Li, Hang
    Liu, Xiaopeng
    Li, Minghao
    Wang, Siyang
    Zhang, Yu
    Jiang, Chaofan
    Hua, Ruimao
    Tress, Wolfgang
    Meloni, Simone
    Yi, Chenyi
    JOULE, 2024, 8 (06) : 1691 - 1706
  • [7] Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells
    Guo, Haodan
    Xiang, Wanchun
    Fang, Yanyan
    Li, Jingrui
    Lin, Yuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (34)
  • [8] Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells
    Zhao, Xing
    Wu, Danxia
    Yan, Huilin
    Cui, Peng
    Qiu, Yujie
    Fan, Bingbing
    Yue, Xiaopeng
    Li, Liang
    Li, Meicheng
    SMALL, 2024,
  • [9] Multifunctional Buried Interface Modification Enables Efficient Tin Perovskite Solar Cells
    Chen, Yali
    Qi, Heng
    Wang, Kun
    Kang, Ziyong
    Pan, Guangjiu
    Everett, Christopher R.
    Mueller-Buschbaum, Peter
    Tong, Yu
    Wang, Hongqiang
    SMALL METHODS, 2024, 8 (02)
  • [10] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)