Numerical Investigation of the Three-Dimensional Time-Fractional Extended Fisher-Kolmogorov Equation via a Meshless Method

被引:0
|
作者
Liu, Jiaqi [1 ]
Ji, Cui-Cui [1 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized finite difference method; meshless technique; TF-EFK equation; fourth- order nonlinear system; arbitrary domain; FINITE-DIFFERENCE METHOD; MOVING LEAST-SQUARES; ERROR ANALYSIS; RANDOM-WALKS; DIFFUSION; SCHEME; EFK;
D O I
10.4208/jms.v57n4.24.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop an efficient meshless technique for solving numerical solutions of the three-dimensional time-fractional extended Fisher-Kolmogorov (TF-EFK) equation. Firstly, the L 2-1 sigma formula on a general mesh is used to discretize the Caputo fractional derivative, and then a weighted average technique at two neighboring time levels is adopted to implement the time discretization of the TF-EFK equation. After applying this time discretization, the generalized finite difference method (GFDM) is introduced for the space discretization to solve the fourth-order nonlinear algebra system generated from the TF-EFK equation with an arbitrary domain. Numerical examples are investigated to validate the performance of the proposed mesh- less GFDM in solving the TF-EFK equation in high dimensions with complex domains.
引用
收藏
页码:460 / 475
页数:16
相关论文
共 50 条
  • [1] Three-dimensional application of the meshless generalized finite difference method for solving the extended Fisher-Kolmogorov equation
    Ju, Bingrui
    Qu, Wenzhen
    APPLIED MATHEMATICS LETTERS, 2023, 136
  • [2] An Efficient Technique to Study Time Fractional Extended Fisher-Kolmogorov Equation
    Pavani, K.
    Raghavendar, K.
    Aruna, K.
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 1200 - 1215
  • [3] Numerical methods for the extended Fisher-Kolmogorov (EFK) equation
    Danumjaya, Palla
    Pani, Amiya Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (02) : 186 - 210
  • [4] Numerical solution for stochastic extended Fisher-Kolmogorov equation
    Sweilam, N. H.
    ElSakout, D. M.
    Muttardi, M. M.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [5] Continuous Dependence on Data for Solutions of Fractional Extended Fisher-Kolmogorov Equation
    Chen, Pengyu
    Xin, Zhen
    An, Jiahui
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) : 735 - 739
  • [6] Direct local boundary integral equation method for numerical solution of extended Fisher-Kolmogorov equation
    Ilati, Mohammad
    Dehghan, Mehdi
    ENGINEERING WITH COMPUTERS, 2018, 34 (01) : 203 - 213
  • [7] Dynamics and Long Time Convergence of the Extended Fisher-Kolmogorov Equation under Numerical Discretization
    Wang Jue
    Ma Fu-ming
    CommunicationsinMathematicalResearch, 2013, 29 (01) : 51 - 60
  • [8] Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique
    Thottoli, Shafeeq Rahman
    Tamsir, Mohammad
    Meetei, Mutum Zico
    Msmali, Ahmed H.
    AIMS MATHEMATICS, 2024, 9 (07): : 17339 - 17358
  • [9] Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation
    Danumjaya, P
    Pani, AK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (01) : 101 - 117
  • [10] NUMERICAL SOLUTIONS FOR THE FOURTH ORDER EXTENDED FISHER-KOLMOGOROV EQUATION WITH HIGH ACCURACY BY DIFFERENTIAL QUADRATURE METHOD
    Bashan, Ali
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 9 (03): : 273 - 284