A Proximal Algorithm for Optimizing Compositions of Quadratic plus Nonconvex Nonsmooth Functions

被引:0
|
作者
Zhou, Yiming [1 ]
Dai, Wei [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
关键词
Majorization-minimization; nonconvex and nonsmooth optimization; proximal Newton-like method; CONVERGENCE;
D O I
10.23919/EUSIPCO63174.2024.10715202
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many applications require minimizing the sum of quadratic and nonconvex nonsmooth functions. This problem is commonly referred to the scaled proximal operator. Despite its simple formulation, current approaches suffer from slow convergence or high implementation complexity or both. To overcome these limitations, we develop a new second-order proximal algorithm. Key design involves building and minimizing a series of opportunistically majorized problems along a hybrid Newton direction. The approach computes the Hessian inverse only once, eliminating the need for iteratively updating the approximation as in quasi-Newton methods. Theoretical results on convergence to a critical point and local convergence rate are presented. Numerical results demonstrate that the proposed algorithm not only achieves a faster convergence rate but also tends to converge to a better local optimum.
引用
收藏
页码:2627 / 2631
页数:5
相关论文
共 50 条
  • [1] On the complexity of a quadratic regularization algorithm for minimizing nonsmooth and nonconvex functions
    Amaral, V. S.
    Lopes, J. O.
    Santos, P. S. M.
    Silva, G. N.
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [2] MANIFOLD SAMPLING FOR OPTIMIZING NONSMOOTH NONCONVEX COMPOSITIONS
    Larson, Jeffrey
    Menickelly, Matt
    Zhou, Baoyu
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2638 - 2664
  • [3] A PROXIMAL MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1300 - 1328
  • [4] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    Hare, W.
    Sagastizabal, C.
    Solodov, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 1 - 28
  • [5] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    W. Hare
    C. Sagastizábal
    M. Solodov
    Computational Optimization and Applications, 2016, 63 : 1 - 28
  • [6] A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR NONCONVEX, NONSMOOTH CONSTRAINED OPTIMIZATION
    Curtis, Frank E.
    Overton, Michael L.
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) : 474 - 500
  • [7] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Pham, Tan Nhat
    Dao, Minh N. N.
    Shah, Rakibuzzaman
    Sultanova, Nargiz
    Li, Guoyin
    Islam, Syed
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1763 - 1795
  • [8] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Tan Nhat Pham
    Minh N. Dao
    Rakibuzzaman Shah
    Nargiz Sultanova
    Guoyin Li
    Syed Islam
    Numerical Algorithms, 2023, 94 : 1763 - 1795
  • [9] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [10] A Proximal Zeroth-Order Algorithm for Nonconvex Nonsmooth Problems
    Kazemi, Ehsan
    Wang, Liqiang
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 64 - 71