Tuning the structural and NO2 gas sensing properties of SnO2 films via In doping

被引:0
|
作者
Addie, Ali J. [1 ]
Batros, Shatha Sh. [1 ]
Hassan, Azhar I. [2 ]
机构
[1] Center of Industrial Applications and Materials Technology, Scientific Research Commission, Baghdad,10070, Iraq
[2] Applied Science Department, University of Technology-Iraq, Baghdad,10066, Iraq
关键词
Air quality - Chemical sensors - Crystal orientation - Direct air capture - Gas sensing electrodes - Indium compounds - Nanocomposite thin films - Nitrogen oxides - Oxide films - Semiconductor doping - Surface roughness - Tin dioxide;
D O I
10.1016/j.tsf.2025.140669
中图分类号
学科分类号
摘要
This study investigates the improvement of chemiresistive gas sensor properties in SnO2 thin films by In doping via scalable spray pyrolysis. By systematically varying the indium concentration from 0 to 7.5 at.%, we found that a doping level of 5 at.% optimally maintains crystal integrity while significantly improving the sensor performance for nitrogen dioxide (NO2), a common environmental pollutant. The In-doped sensors achieved a peak sensitivity of 109 at an operating temperature of 200 °C, with a rapid response time of 8 s and a recovery time of 70 s, outperforming the undoped sensors. Structural analysis showed that a 5 at.% doping reduced the grain size from 93 nm to 73 nm, which increased the surface area and improved the dynamics of gas adsorption. In addition, a reduction in surface roughness and a change in the texture coefficient T(110) were observed, indicating that the surfaces have become smoother, and the crystal growth orientations have changed, leading to an improvement in electron transport. Doping with In significantly improves the electronic structure and surface reactivity of SnO2 films. This method enables the production of highly effective NO2 sensors, which are important for air quality monitoring and environmental protection. © 2025 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films
    Kamble, Dilly L.
    Harale, Namdev S.
    Patil, Vithoba L.
    Patil, Pramod S.
    Kadam, Laxrnan D.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 38 - 46
  • [2] Nanostructured SnO2 thin films for NO2 gas sensing applications
    Khuspe, G. D.
    Sakhare, R. D.
    Navale, S. T.
    Chougule, M. A.
    Kolekar, Y. D.
    Mulik, R. N.
    Pawar, R. C.
    Lee, C. S.
    Patil, V. B.
    CERAMICS INTERNATIONAL, 2013, 39 (08) : 8673 - 8679
  • [3] Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates
    Zhu, Xiangyi
    Guo, Yongcai
    Ren, Hao
    Gao, Chao
    Zhou, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 248 : 560 - 570
  • [4] Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties
    Sharma, Bharat
    Sharma, Ashutosh
    Joshi, Monika
    Myung, Jae-ha
    CHEMOSENSORS, 2020, 8 (03)
  • [5] ZnO/SnO2 based composite heterostructure for NO2 gas sensing properties
    Er, Irmak Karaduman
    Uysal, Samet
    Ates, Aytunc
    Acar, Selim
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 623 - 635
  • [6] Influence of Mg Doping Levels on the Sensing Properties of SnO2 Films
    Bendahmane, Bouteina
    Tomic, Milena
    Touidjen, Nour El Houda
    Gracia, Isabel
    Vallejos, Stella
    Mansour, Farida
    SENSORS, 2020, 20 (07)
  • [7] Ni-doped SnO2 thin films for NO2 gas sensing application
    Abdul Wahid K.I.
    Chaker C.
    Chaker H.
    Sensors and Actuators A: Physical, 2023, 360
  • [8] On the structural, morphological and gas sensing properties of nanocrystalline SnO2
    Muthuvinayagam, A.
    Viswanathan, B.
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2015, 54 (09): : 1092 - 1097
  • [9] Role of surface properties of MoO3-doped SnO2 thin films on NO2 gas sensing
    Kaur, Jaswinder
    Vankar, V. D.
    Bhatnagar, M. C.
    THIN SOLID FILMS, 2010, 518 (14) : 3982 - 3987
  • [10] Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties
    Kaur, Jaswinder
    Kumar, Rajesh
    Bhatnagar, M. C.
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 126 (02) : 478 - 484