Innovative electromagnetic vibration energy harvester with free-rotating mass for passive resonant frequency tuning

被引:0
|
作者
Ells, David Alexander [1 ]
Mechefske, Christopher [1 ]
Lai, Yongjun [1 ]
机构
[1] Queens Univ, Dept Mech & Mat Engn, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Vibration energy harvester; Electromagnetic; Passive resonant frequency tuning; Rotating mass; Wide bandwidth; DESIGN;
D O I
10.1016/j.apenergy.2024.124622
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Vibration energy harvesters (VEHs) can be used to power wireless electronic devices by converting mechanical energy into electrical energy. However, these harvesters are generally resonant structures with narrow bandwidth, posing challenges with respect to the operating frequency range. This paper presents a novel electromagnetic VEH with a structure that passively tunes its resonant frequency. The proposed design is primarily composed of a flat spring and a freely rotating mass. The design was simulated and tested experimentally. Tests showed that the mass can rotate towards the resonant position, dynamically changing the resonant frequency of the structure, to match the vibration frequency. The VEH demonstrated a resonant frequency range of 10 Hz, from 60 to 70 Hz, and when compared to the same structure with a fixed mass, it showed a 90 % improvement in bandwidth, from 12 to 22 Hz. These results show that passive resonant frequency tuning can significantly improve the operating frequency range of VEHs for practical use. The normalized power density of the VEH was 1.64 kgs/m(3) in vibrations of 60 Hz and 1 g, demonstrating that it is capable of powering wireless electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Resonant frequency tuning of an industrial vibration energy harvester
    Toh, T. T.
    Wright, S. W.
    Mitcheson, P. D.
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [2] Resonant frequency tuning of a novel piezoelectric vibration energy harvester (PVEH)
    Raghavan, Sreekumari
    Sharma, Ashutosh
    Gupta, Rishi
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (20) : 4984 - 4999
  • [3] Frequency tuning design for vibration-driven electromagnetic energy harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    IET RENEWABLE POWER GENERATION, 2015, 9 (07) : 801 - 808
  • [4] Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics
    Mitcheson, Paul D.
    Toh, Tzern T.
    Wong, Kwok H.
    Burrow, Steve G.
    Holmes, Andrew S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2011, 58 (12) : 792 - 796
  • [5] A Novel Frequency Tuning Design for Vibration-Driven Electromagnetic Energy Harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    2015 IEEE SENSORS, 2015, : 386 - 389
  • [7] Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester
    Xie, Longhan
    Du, Ruxu
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [8] An Electromagnetic Frequency Increased Vibration Energy Harvester
    Ashraf, Khalid
    Khir, Mohd Haris Md
    Dennis, John Ojur
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4231 - +
  • [9] Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester
    Bouhedma, Sofiane
    Zheng, Yuhang
    Lange, Fred
    Hohlfeld, Dennis
    SENSORS, 2019, 19 (05)
  • [10] Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester
    Podder, Pranay
    Constantinou, Peter
    Mallick, Dhiman
    Amann, Andreas
    Roy, Saibal
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (03) : 539 - 549