Power Transformer Fault Diagnosis Based on Ensemble Learning

被引:0
|
作者
Zhou, Wei [1 ]
Li, Yang [2 ]
机构
[1] POWERCHINA Guizhou Elect Power Engn Co Ltd, Syst Planning Ctr, Guiyang, Peoples R China
[2] Guizhou Univ Commerce, Coll Comp & Informat Engn, Guiyang, Peoples R China
关键词
power transformer; dissolved gas in oil; unbalanced data set; fault diagnosis;
D O I
10.1109/ICPST61417.2024.10602106
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the aspect of transformer fault diagnosis, the relationship between transformer fault and dissolved gas in oil has been particularly described in this paper. Considering the objective fact that transformer fault data is far less than normal data, the balanced processing method of unbalanced data sets in the classification process has been discussed. Considering these factors, all kinds of fault state data similar to the normal state data were selected as sample data, and ensemble learning was used to fault diagnose the transformer. The experimental results show that the method used in this research has an accuracy of 94.5% in fault diagnosis, which is significantly higher than other fault diagnosis methods, verifying the correctness and feasibility of this method.
引用
收藏
页码:1070 / 1075
页数:6
相关论文
共 50 条
  • [1] Transformer Fault Diagnosis Based on Stacking Ensemble Learning
    Wang, Xue
    Han, Tao
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (12) : 1734 - 1739
  • [2] A feature selection and ensemble learning based methodology for transformer fault diagnosis
    Rao, Shaowei
    Zou, Guoping
    Yang, Shiyou
    Barmada, Sami
    APPLIED SOFT COMPUTING, 2024, 150
  • [3] Active diverse learning neural network ensemble approach for power transformer fault diagnosis
    Xu Y.
    Zhang O.
    Wang Y.
    Journal of Networks, 2010, 5 (10) : 1151 - 1159
  • [4] Fault diagnosis of power transformer based on large margin learning classifier
    Wang, Xi-Zhao
    Lu, Ming-Zhu
    Huo, Jian-Bing
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2886 - +
  • [5] Improved intelligent methods for power transformer fault diagnosis based on tree ensemble learning and multiple feature vector analysis
    Hechifa, Abdelmoumene
    Lakehal, Abdelaziz
    Nanfak, Arnaud
    Saidi, Lotfi
    Labiod, Chouaib
    Kelaiaia, Ridha
    Ghoneim, Sherif S. M.
    ELECTRICAL ENGINEERING, 2024, 106 (03) : 2575 - 2594
  • [6] Hierarchical Federated Learning for Power Transformer Fault Diagnosis
    Lin, Jun
    Ma, Jin
    Zhu, Jianguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] ANN based power transformer fault diagnosis
    Patel, N.K.
    Khubchandani, R.K.
    Journal of the Institution of Engineers (India): Electrical Engineering Division, 2004, 85 (MARCH): : 60 - 63
  • [8] Transformer Fault Diagnosis Utilizing Feature Extraction and Ensemble Learning Model
    Xu, Gonglin
    Zhang, Mei
    Chen, Wanli
    Wang, Zhihui
    INFORMATION, 2024, 15 (09)
  • [9] Federated Learning Based Fault Diagnosis of Power Transformer with Unbalanced Sample Data
    Guo F.
    Liu S.
    Wu X.
    Chen B.
    Zhang W.
    Ge Q.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (10): : 145 - 152
  • [10] Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning
    Zhang, Chaolong
    He, Yigang
    Du, Bolun
    Yuan, Lifen
    Li, Bing
    Jiang, Shanhe
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 108 : 533 - 545