On two non-existence results for Cameron–Liebler k-sets in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textrm{PG}}\,}}(n,q)$$\end{document}On two non-existence results for Cameron–Liebler setsJ. De Beule et al.

被引:0
|
作者
Jan De Beule [1 ]
Jonathan Mannaert [1 ]
Leo Storme [2 ]
机构
[1] Vrije Universiteit Brussel,Department of Mathematics and Data Science
[2] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
关键词
Cameron-Lieber sets; Boolean functions; Modular equality; 51E20; 05B20; 06E30;
D O I
10.1007/s10623-024-01505-8
中图分类号
学科分类号
摘要
This paper focuses on non-existence results for Cameron–Liebler k-sets. A Cameron–Liebler k-set is a collection of k-spaces in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textrm{PG}}\,}}(n,q)$$\end{document} or AG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textrm{AG}}\,}}(n,q)$$\end{document} admitting a certain parameter x, which is dependent on the size of this collection. One of the main research questions remains the (non-)existence of Cameron–Liebler k-sets with parameter x. This paper improves two non-existence results. First we show that the parameter of a non-trivial Cameron–Liebler k-set in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textrm{PG}}\,}}(n,q)$$\end{document} should be larger than qn-5k2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{n-\frac{5k}{2}-1}$$\end{document}, which is an improvement of an earlier known lower bound. Secondly, we prove a modular equality on the parameter x of Cameron–Liebler k-sets in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textrm{PG}}\,}}(n,q)$$\end{document} with x<qn-k-1qk+1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<\frac{q^{n-k}-1}{q^{k+1}-1}$$\end{document}, n≥2k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2k+1$$\end{document}, n-k+1≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k+1\ge 7$$\end{document} and n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document} even. In the affine case we show a similar result for n-k+1≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k+1\ge 3$$\end{document} and n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document} even. This is a generalization of earlier known modular equalities in the projective and affine case.
引用
收藏
页码:1163 / 1177
页数:14
相关论文
共 50 条