Mean values of multiplicative functions and applications to residue-class distribution

被引:0
|
作者
Pollack, Paul [1 ]
Roy, Akash Singha [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30605 USA
关键词
multiplicative function; mean values; equidistribution; uniform distribution; weak equidistribution; weak uniform distribution; Alladi-Erd & odblac; s function; Euler totient function; EXPONENTIAL-SUMS; CONGRUENCES;
D O I
10.1017/S0013091524000890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a uniform bound on the partial sums of multiplicative functions under very general hypotheses. As an application, we give a nearly optimal estimate for the count of $n \le x$ for which the Alladi-Erd & odblac;s function $A(n) = \sum_{p<^>k \parallel n} k p$ takes values in a given residue class modulo q, where q varies uniformly up to a fixed power of $\log x$. We establish a similar result for the equidistribution of the Euler totient function $\phi(n)$ among the coprime residues to the 'correct' moduli q that vary uniformly in a similar range and also quantify the failure of equidistribution of the values of $\phi(n)$ among the coprime residue classes to the 'incorrect' moduli.
引用
收藏
页数:19
相关论文
共 50 条