PRoT-FL: A privacy-preserving and robust Training Manager for Federated Learning

被引:0
|
作者
Gamiz, Idoia [1 ,2 ]
Regueiro, Cristina [2 ]
Jacob, Eduardo [1 ]
Lage, Oscar [2 ]
Higuero, Marivi [1 ]
机构
[1] Univ Basque Country UPV EHU, Dept Commun Engn, Bilbao 48013, Bizkaia, Spain
[2] TECNALIA, BRTA, Bizkaia Sci & Technol Pk 700, Derio 48160, Bizkaia, Spain
关键词
Federated learning; Privacy; Robustness; Security; Blockchain; Cryptography;
D O I
10.1016/j.ipm.2024.103929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning emerged as a promising solution to enable collaborative training between organizations while avoiding centralization. However, it remains vulnerable to privacy breaches and attacks that compromise model robustness, such as data and model poisoning. This work presents PRoT-FL, a privacy-preserving and robust Training Manager capable of coordinating different training sessions at the same time. PRoT-FL conducts each training session through a Federated Learning scheme that is resistant to privacy attacks while ensuring robustness. To do so, the model exchange is conducted by a "Private Training Protocol"through secure channels and the protocol is combined with a public blockchain network to provide auditability, integrity and transparency. The original contribution of this work includes: (i) the proposal of a "Private Training Protocol"that breaks the link between a model and its generator, (ii) the integration of this protocol into a complete system, PRoT-FL, which acts as an orchestrator and manages multiple trainings and (iii) a privacy, robustness and performance evaluation. The theoretical analysis shows that PRoT-FL is suitable for a wide range of scenarios, being capable of dealing with multiple privacy attacks while maintaining a flexible selection of methods against attacks that compromise robustness. The experimental results are conducted using three benchmark datasets and compared with traditional Federated Learning using different robust aggregation rules. The results show that those rules still apply to PRoT-FL and that the accuracy of the final model is not degraded while maintaining data privacy.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] PPBR-FL: A Privacy-Preserving and Byzantine-Robust Federated Learning System
    Lin, Ying
    Ning, Shengfu
    Hu, Jianpeng
    Liu, Jiansong
    Cao, Yifan
    Zhang, Junyuan
    Pi, Huan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 39 - 50
  • [2] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [3] BSR-FL: An Efficient Byzantine-Robust Privacy-Preserving Federated Learning Framework
    Zeng, Honghong
    Li, Jie
    Lou, Jiong
    Yuan, Shijing
    Wu, Chentao
    Zhao, Wei
    Wu, Sijin
    Wang, Zhiwen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (08) : 2096 - 2110
  • [4] Privacy-preserving federated learning compatible with robust aggregators
    Alebouyeh, Zeinab
    Bidgoly, Amir Jalaly
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 143
  • [5] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [6] Privacy-Preserving and Byzantine-Robust Federated Learning
    Dong, Caiqin
    Weng, Jian
    Li, Ming
    Liu, Jia-Nan
    Liu, Zhiquan
    Cheng, Yudan
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (02) : 889 - 904
  • [7] Privacy-Preserving and Robust Federated Deep Metric Learning
    Tian, Yulong
    Ke, Xiaopeng
    Tao, Zeyi
    Ding, Shaohua
    Xu, Fengyuan
    Li, Qun
    Han, Hao
    Zhong, Sheng
    Fu, Xinyi
    2022 IEEE/ACM 30TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2022,
  • [8] A Verifiable and Privacy-Preserving Federated Learning Training Framework
    Duan, Haohua
    Peng, Zedong
    Xiang, Liyao
    Hu, Yuncong
    Li, Bo
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 5046 - 5058
  • [9] Pain-FL: Personalized Privacy-Preserving Incentive for Federated Learning
    Sun, Peng
    Che, Haoxuan
    Wang, Zhibo
    Wang, Yuwei
    Wang, Tao
    Wu, Liantao
    Shao, Huajie
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3805 - 3820
  • [10] Efficient and Privacy-Preserving Byzantine-robust Federated Learning
    Luan, Shijie
    Lu, Xiang
    Zhang, Zhuangzhuang
    Chang, Guangsheng
    Guo, Yunchuan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2202 - 2208