Evaluation of Mean Performance and Stability of Lentil Genotypes According to Combination of Additive Main Effects and Multiplicative Interaction, and Best Linear Unbiased Prediction Methods

被引:0
|
作者
Pezeshkpour, Payam [1 ]
Naseri, Bita [2 ]
Amiri, Reza [1 ]
Mirzaei, Amir [3 ]
Shobeiri, Seyedeh Soudabeh [4 ]
Karami, Iraj [5 ]
机构
[1] AREEO, Lorestan Agr & Nat Resourses Res & Educ Ctr, Crop & Hort Sci Res Dept, Khorramabad, Lorestan, Iran
[2] AREEO, Agr & Nat Resourses Res & Educ Ctr, Plant Protect Res Dept, Kermanshah, Iran
[3] AREEO, Kohgiloyeh & Boyerahmad Agr & Nat Resourses Res &, Gachsaran, Iran
[4] AREEO, Dryland Agr Res Inst, Zanjan Agr & Nat Resourses Res & Educ Ctr, Crop & Hort Sci Res Dept, Zanjan, Iran
[5] AREEO, Dryland Agr Res Inst, Sararood Branch, Kermanshah, Iran
来源
LEGUME SCIENCE | 2025年 / 7卷 / 01期
关键词
heat plot; mean weight score; mosaic plot; simultaneous selection; GRAIN-YIELD;
D O I
10.1002/leg3.70021
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This research (2020-2022) aimed to evaluate the interaction of genotype x environment with seed yield and stability of performance for 19 lentil genotypes and cultivars using additive main effects and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) in a rainfed, semi-temperate region. Results of the likelihood ratio test (LRT) showed significant effects of genotype and genotype x environment interaction on seed yield, suggesting the best BLUP for datasets. Based on the AMMI stability value (ASV), Genotypes 8, 2, 12, 10, and 5 were stable in performance. According to two principal components of AMMI, Genotypes 10, 11, and 2 were stable in performance. Mosaic graph indicated that genotype and genotype x environment interaction explained 15.45% and 84.55% of total variance, respectively. The weighted average of mean performance (WAASBY) index according to BLUP showed high-yielding and performance stability of Genotypes 6, 12, and 15. Therefore, the WAASBY index was determined to be the best index to evawluate stable lentil genotypes across different environments.
引用
收藏
页数:11
相关论文
共 8 条
  • [1] BEST LINEAR UNBIASED PREDICTION (BLUP) FOR REGIONAL YIELD TRIALS - A COMPARISON TO ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION (AMMI) ANALYSIS
    PIEPHO, HP
    THEORETICAL AND APPLIED GENETICS, 1994, 89 (05) : 647 - 654
  • [2] Performance of Cowpea Genotypes in the Brazilian Midwest Using the Bayesian Additive Main Effects and Multiplicative Interaction Model
    de Oliveira, Luciano Antonio
    da Silva, Carlos Pereira
    Teodoro, Paulo Eduardo
    Torres, Francisco Eduardo
    Correa, Agenor Martinho
    Bhering, Leonardo Lopes
    AGRONOMY JOURNAL, 2018, 110 (01) : 147 - 154
  • [4] Analysis of Grain Yield Stability in Hexaploid Wheat Genotypes Grown in Temperate Regions of Iran Using Additive Main Effects and Multiplicative Interaction
    Najafian, G.
    Kaffashi, A. K.
    Jafar-Nezhad, A.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2010, 12 (02): : 213 - 222
  • [5] Additive main effects and multiplicative interaction analyses of yield performance in rice genotypes for general and specific adaptation to salt stress in locations in India
    Krishnamurthy, S. L.
    Sharma, P. C.
    Sharma, D. K.
    Singh, Y. P.
    Mishra, V. K.
    Burman, D.
    Maji, B.
    Mandal, S.
    Sarangi, S. K.
    Gautam, R. K.
    Singh, P. K.
    Manohara, K. K.
    Marandi, B. C.
    Chattopadhyay, K.
    Padmavathi, G.
    Vanve, P. B.
    Patil, K. D.
    Thirumeni, S.
    Verma, O. P.
    Khan, A. H.
    Tiwari, S.
    Geetha, S.
    Gill, R.
    Yadav, V. K.
    Roy, B.
    Prakash, M.
    Anandan, A.
    Bonifacio, J.
    Ismail, A. M.
    Singh, R. K.
    EUPHYTICA, 2021, 217 (02)
  • [6] Additive main effects and multiplicative interaction analyses of yield performance in rice genotypes for general and specific adaptation to salt stress in locations in India
    S. L. Krishnamurthy
    P. C. Sharma
    D. K. Sharma
    Y. P. Singh
    V. K. Mishra
    D. Burman
    B. Maji
    S. Mandal
    S. K. Sarangi
    R. K. Gautam
    P. K. Singh
    K. K. Manohara
    B. C. Marandi
    K. Chattopadhyay
    G. Padmavathi
    P. B. Vanve
    K. D. Patil
    S. Thirumeni
    O. P. Verma
    A. H. Khan
    S. Tiwari
    S. Geetha
    R. Gill
    V. K. Yadav
    B. Roy
    M. Prakash
    A. Anandan
    J. Bonifacio
    A. M. Ismail
    R. K. Singh
    Euphytica, 2021, 217
  • [7] Evaluation of Efficiency of Weighted Average of Stability and Mean Performance Estimated by Linear Mixed Models for Identifying High-Yielding Lentil Genotypes Adapted to Rainfed Regions
    Shobeiri, Seyedeh Soudabeh
    Pezeshkpour, Payam
    Naseri, Bita
    LEGUME SCIENCE, 2024, 6 (02):
  • [8] Prediction of genotype performance for untested years based on additive main effects and multiplicative interaction and linear mixed models: An illustration using dolichos bean (Lablab purpureus (L.) Sweet) multiyear data
    Spoorthi, Vinayak
    Ramesh, Sampangi
    Sunitha, Nagenahalli Chandrappa
    Vaijayanthi, Panichayil Vijayakumar
    ANNALS OF APPLIED BIOLOGY, 2022, 180 (02) : 224 - 235