fixation probability;
Moran process;
random graph;
EVOLUTIONARY DYNAMICS;
D O I:
10.1002/rsa.70003
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
We study the fixation probability for two versions of the Moran process on the random graph Gn,p$$ {G}_{n,p} $$ at the threshold for connectivity. The Moran process models the spread of a mutant population in a network. Throughout the process, there are vertices of two types, mutants, and non-mutants. Mutants have fitness s$$ s $$ and non-mutants have fitness 1. The process starts with a unique individual mutant located at the vertex v0$$ {v}_0 $$. In the Birth-Death version of the process a random vertex is chosen proportionally to its fitness and then changes the type of a random neighbor to its own. The process continues until the set of mutants X$$ X $$ is empty or [n]$$ \left[n\right] $$. In the Death-Birth version, a uniform random vertex is chosen and then takes the type of a random neighbor, chosen according to fitness. The process again continues until the set of mutants X$$ X $$ is empty or [n]$$ \left[n\right] $$. The fixation probability is the probability that the process ends with X=& empty;$$ X=\varnothing $$. We show that asymptotically correct estimates of the fixation probability depend only on the degree of v0$$ {v}_0 $$ and its neighbors. In some cases we can provide values for these estimates and in other places we can only provide non-linear recurrences that could be used to compute values.
机构:
Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, LithuaniaVilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
Bloznelis, Mindaugas
Karonski, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, PolandVilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
Ben-Eliezer, Omri
Hefetz, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Ariel Univ, Dept Comp Sci, Ariel, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
Hefetz, Dan
Kronenberg, Gal
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
Kronenberg, Gal
Parczyk, Olaf
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Ilmenau, Inst Math, Ilmenau, GermanyTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
Parczyk, Olaf
Shikhelman, Clara
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
Shikhelman, Clara
Stojakovic, Milos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad, SerbiaTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Blavatnik Sch Comp Sci, Tel Aviv, Israel
机构:
Weizmann Inst Sci, IL-76100 Rehovot, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, Israel
Benjamini, Itai
Haber, Simi
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, Israel
Haber, Simi
Krivelevich, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, Israel
Krivelevich, Michael
Lubetzky, Eyal
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, Israel