An Improved Weight Optimization of Hybrid Machine Learning Models for Forecasting Daily PM2.5 Concentration

被引:0
|
作者
Ratchagit, Manlika [1 ]
机构
[1] Maejo Univ, Fac Sci, Program Stat & Informat Management, Chiang Mai, Thailand
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 03期
关键词
machine learning; differential evolution algorithm; PM2.5; air pollution; optimization; COMBINATION;
D O I
10.37256/cm.5320245131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PM2.5 is an air pollutant primarily produced by human activities, including the combustion of fossil fuels, industrial emissions, vehicle exhaust, and more. This issue has emerged as a substantial global concern, particularly in Thailand, where the levels of PM2.5 during the summer season have reached hazardous levels. PM2.5 forecasting is a widely discussed subject that raises awareness and safeguards individuals against pollution. The novelty of this paper is to estimate the weight of linear and nonlinear hybrid models using a differential evolution algorithm. This approach is used for the minimization of the objective function based on hybrid procedures. The data utilized in this study consists of the daily mean PM2.5 concentration (micrograms per cubic meter) obtained from the Pollution Control Department, Ministry of Natural Resources and Environment, Thailand. The data covers the period from January 2014 to June 2023, encompassing a total of 3,468 observations. Three well-known machine learning approaches, namely the artificial neural network, the long short-term memory, and the convolutional neural network, are employed. We then combined the predicted PM2.5 obtained from the single machine learning model using linear and nonlinear hybrid procedures. The differential evolution algorithm is utilized to estimate the weight of the hybrid techniques for both scenarios and compare it with state-of-the-art weight approximation. The criteria for evaluating the performance of various hybrid approaches are the performance metrics: the mean absolute error and the median absolute error. The findings of this paper indicate that using a differential evolution algorithm for weight optimization in hybrid procedures outperforms state-of-the-art weight approaches for both linear and nonlinear hybrid models in terms of performance metrics.
引用
收藏
页码:3953 / 3970
页数:18
相关论文
共 50 条
  • [1] An improved deep learning model for predicting daily PM2.5 concentration
    Fei Xiao
    Mei Yang
    Hong Fan
    Guanghui Fan
    Mohammed A. A. Al-qaness
    Scientific Reports, 10
  • [2] An improved deep learning model for predicting daily PM2.5 concentration
    Xiao, Fei
    Yang, Mei
    Fan, Hong
    Fan, Guanghui
    Al-qaness, Mohammed A. A.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] An enhanced hybrid ensemble deep learning approach for forecasting daily PM2.5
    Liu Hui
    Deng Da-hua
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (06) : 2074 - 2083
  • [4] A Novel Hybrid Model for PM2.5 Concentration Forecasting Based on Secondary Decomposition Ensemble and Weight Combination Optimization
    Huang, Yuan
    Zhang, Xiaoyu
    Li, Yanxia
    IEEE ACCESS, 2023, 11 : 119748 - 119765
  • [5] PM2.5 concentration simulation by hybrid machine learning based on image features
    Ma, Minjin
    Zhao, Zhenzhu
    Ma, Yuzhan
    Cao, Yidan
    Kang, Guoqiang
    FRONTIERS IN EARTH SCIENCE, 2025, 13
  • [6] Forecasting PM2.5 Concentration using Spatio-Temporal Extreme Learning Machine
    Liu, Bo
    Yan, Shuo
    Li, Jianqiang
    Li, Yong
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 950 - 953
  • [7] Forecasting PM2.5 concentration levels using shallow machine learning models on the Monterrey Metropolitan Area in Mexico
    Pozo-Luyo, Cesar Alejandro
    Cruz-Duarte, Jorge M.
    Amaya, Ivan
    Ortiz-Bayliss, Jose Carlos
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (11)
  • [8] Modelling and Forecasting Temporal PM2.5 Concentration Using Ensemble Machine Learning Methods
    Ejohwomu, Obuks Augustine
    Shamsideen Oshodi, Olakekan
    Oladokun, Majeed
    Bukoye, Oyegoke Teslim
    Emekwuru, Nwabueze
    Sotunbo, Adegboyega
    Adenuga, Olumide
    BUILDINGS, 2022, 12 (01)
  • [9] Prediction of PM2.5 Concentration Using Spatiotemporal Data with Machine Learning Models
    Ma, Xin
    Chen, Tengfei
    Ge, Rubing
    Xv, Fan
    Cui, Caocao
    Li, Junpeng
    ATMOSPHERE, 2023, 14 (10)
  • [10] Temporal heterogeneity in the performance of machine learning models for PM2.5 concentration estimation
    Li, Peizheng
    Huang, Shiqi
    Luo, Chenxi
    Li, Xiangying
    Zhang, Qingyu
    Wang, Jing
    Yang, Can
    Yang, Haomin
    Liao, Jianpeng
    Chen, Qihao
    Ma, Lu
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 189 : 977 - 984