A Double Machine Learning Approach for the Evaluation of COVID-19 Vaccine Effectiveness Under the Test-Negative Design: Analysis of Québec Administrative Data

被引:0
|
作者
Jiang, Cong [1 ]
Talbot, Denis [2 ]
Carazo, Sara [3 ]
Schnitzer, Mireille E. [1 ]
机构
[1] Univ Montreal, Fac Pharm, Montreal, PQ, Canada
[2] Univ Laval, Dept Med Sociale & Prevent, Quebec City, PQ, Canada
[3] Inst Natl Sante Publ Quebec, Quebec City, PQ, Canada
基金
加拿大健康研究院;
关键词
doubly robust; efficiency bounds; machine learning; outcome-dependent sampling; sample splitting; SENSITIVITY-ANALYSIS; INFLUENZA; CALCULUS; BIAS;
D O I
10.1002/sim.70025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The test-negative design (TND), which is routinely used for monitoring seasonal flu vaccine effectiveness (VE), has recently become integral to COVID-19 vaccine surveillance, notably in Qu & eacute;bec, Canada. Some studies have addressed the identifiability and estimation of causal parameters under the TND, but efficiency bounds for nonparametric estimators of the target parameter under the unconfoundedness assumption have not yet been investigated. Motivated by the goal of improving adjustment for measured confounders when estimating COVID-19 VE among community-dwelling people aged >= 60$$ \ge 60 $$ years in Qu & eacute;bec, we propose a one-step doubly robust and locally efficient estimator called TNDDR (TND doubly robust), which utilizes cross-fitting (sample splitting) and can incorporate machine learning techniques to estimate the nuisance functions and thus improve control for measured confounders. We derive the efficient influence function (EIF) for the marginal expectation of the outcome under a vaccination intervention, explore the von Mises expansion, and establish the conditions for n$$ \sqrt{n} $$-consistency, asymptotic normality, and double robustness of TNDDR. The proposed estimator is supported by both theoretical and empirical justifications.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Covid-19 Vaccine Effectiveness and the Test-Negative Design
    Dean, Natalie E.
    Hogan, Joseph W.
    Schnitzer, Mireille E.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (15): : 1431 - 1433
  • [2] Estimands and Estimation of COVID-19 Vaccine Effectiveness Under the Test-Negative Design Connections to Causal Inference
    Schnitzer, Mireille E.
    EPIDEMIOLOGY, 2022, 33 (03) : 325 - 333
  • [3] Effectiveness of COVID-19 vaccines in Ecuador: A test-negative design
    Perez-Tasigchanaa, Francisco
    Valcarcel-Perez, Ivette
    Arias-Quispe, Maribel
    Astudillo, Lucia
    Bruno, Alfredo
    Herrera G, Marco
    Armas, Ruben
    de Mora, Domenica
    Pinos, Jackeline
    Olmedo, Alfredo
    Salas, Ronald
    Jimbo-Sotomayor, Ruth
    Chiluisa, Carlos
    Acosta, Pablo
    Sanchez, Xavier
    Whittembury, Alvaro
    VACCINE: X, 2023, 15
  • [4] Impact of accounting for correlation between COVID-19 and influenza vaccination in a COVID-19 vaccine effectiveness evaluation using a test-negative design
    Payne, Amanda B.
    Ciesla, Allison Avrich
    Rowley, Elizabeth A. K.
    Weber, Zachary A.
    Reese, Sarah E.
    Ong, Toan C.
    Vazquez-Benitez, Gabriela
    Naleway, Allison L.
    Klein, Nicola P.
    Embi, Peter J.
    Grannis, Shaun J.
    Kharbanda, Anupam B.
    Gaglani, Manjusha
    Tenforde, Mark W.
    Link-Gelles, Ruth
    VACCINE, 2023, 41 (51) : 7581 - 7586
  • [5] Bias assessment of a test-negative design study of COVID-19 vaccine effectiveness used in national policymaking
    Graham, Sophie
    Tessier, Elise
    Stowe, Julia
    Bernal, Jamie Lopez
    Parker, Edward P. K.
    Nitsch, Dorothea
    Miller, Elizabeth
    Andrews, Nick
    Walker, Jemma L.
    McDonald, Helen I.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] Bias assessment of a test-negative design study of COVID-19 vaccine effectiveness used in national policymaking
    Sophie Graham
    Elise Tessier
    Julia Stowe
    Jamie Lopez Bernal
    Edward P. K. Parker
    Dorothea Nitsch
    Elizabeth Miller
    Nick Andrews
    Jemma L. Walker
    Helen I. McDonald
    Nature Communications, 14
  • [7] Evaluation of the COVID-19 vaccine effectiveness on the outcomes of COVID 19 disease in Iran: a test-negative case-control study
    Shadmani, Fatemeh Khosravi
    Moradi, Ghobad
    Naghipour, Mohammadreza
    Asadi, Fatemeh Torkaman
    Ahmadi, Ali
    Mirahmadizadeh, Alireza
    Haghdoost, Ali Akbar
    Mesgarpour, Bita
    Zahraei, Seyed Mohsen
    Goya, Mohammad Mehdi
    Mokhtari, Majid
    Safari-Faramani, Roya
    Zare, Fariba Zomorrodi
    Chegeni, Maryam
    Najafi, Farid
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [8] COVID-19 vaccine effectiveness by HIV status and history of injection drug use: a test-negative analysis
    Puyat, Joseph H.
    Wilton, James
    Fowokan, Adeleke
    Janjua, Naveed Zafar
    Wong, Jason
    Grennan, Troy
    Chambers, Catharine
    Kroch, Abigail
    Costiniuk, Cecilia T.
    Cooper, Curtis L.
    Lauscher, Darren
    Strong, Monte
    Burchell, Ann N.
    Anis, Aslam
    Samji, Hasina
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2023, 26 (10)
  • [9] Test-negative designs applied to COVID-19 vaccine effectiveness assessment: Methodological challenges
    Saragoussi, Delphine
    Rosen, Sarah
    Richards, Margaret
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2021, 30 : 353 - 353
  • [10] Comparison of the Test-negative Design and Cohort Design With Explicit Target Trial Emulation for Evaluating COVID-19 Vaccine Effectiveness
    Li, Guilin
    Gerlovin, Hanna
    Muniz, Michael J. Figueroa
    Wise, Jessica K.
    Madenci, Arin L.
    Robins, James M.
    Aslan, Mihaela
    Cho, Kelly
    Gaziano, John Michael
    Lipsitch, Marc
    Casas, Juan P.
    Hernan, Miguel A.
    Dickerman, Barbra A.
    EPIDEMIOLOGY, 2024, 35 (02) : 137 - 149