Provable optimality of the square-tooth atomic frequency comb quantum memory

被引:0
|
作者
Zang, Allen [1 ]
Suchara, Martin [2 ]
Zhong, Tian [1 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Microsoft Corp, Microsoft Azure Quantum, Redmond, WA USA
关键词
quantum memory; atomic frequency comb; efficiency; semiclassical model; functional optimization; HERALDED ENTANGLEMENT; LIGHT; PULSES; PROPAGATION; EFFICIENCY; REPEATERS;
D O I
10.1088/1751-8121/adba1f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomic frequency comb (AFC) quantum memories are a promising technology for quantum repeater networks because they enable multi-mode, long-time, and high-fidelity storage of photons with on-demand retrieval. The optimization of the retrieval efficiency of an AFC memory is important because it strongly impacts the entanglement distribution rate in quantum networks. Despite initial theoretical analyses and recent experimental demonstrations, a rigorous proof of the universally optimal configuration for the highest AFC retrieval efficiency has not been presented. In this paper we present a simple analytical proof which shows that the optimized square tooth offers the highest retrieval efficiency among all tooth shapes, under the physical constraint of finite optical depth of an atomic ensemble. The optimality still holds when the non-zero background absorption and the finite optical linewidth of atoms are considered. We further compare square, Lorentzian and Gaussian tooth shapes to reinforce the practical advantage of the square-tooth AFC in retrieval efficiency. Our proof lays rigorous foundation for the recipe of creating optimal AFC under realistic experimental conditions.
引用
收藏
页数:22
相关论文
共 43 条
  • [1] Quantum memory and quantum cloning in an atomic frequency comb
    Tian, Mingzhen
    Vega, Devin
    PHYSICAL REVIEW A, 2019, 100 (04)
  • [2] Towards an efficient atomic frequency comb quantum memory
    Amari, A.
    Walther, A.
    Sabooni, M.
    Huang, M.
    Kroll, S.
    Afzelius, M.
    Usmani, I.
    Lauritzen, B.
    Sangouard, N.
    de Riedmatten, H.
    Gisin, N.
    JOURNAL OF LUMINESCENCE, 2010, 130 (09) : 1579 - 1585
  • [3] Maps of Broadband Quantum Memory Based on an Atomic Frequency Comb
    Arslanov, N. M.
    Moiseev, S. A.
    OPTICS AND SPECTROSCOPY, 2019, 126 (01) : 29 - 33
  • [4] Maps of Broadband Quantum Memory Based on an Atomic Frequency Comb
    N. M. Arslanov
    S. A. Moiseev
    Optics and Spectroscopy, 2019, 126 : 29 - 33
  • [5] Influence of the Method of Preparation of the Atomic Frequency Comb on the Quantum Memory Efficiency
    Akhmedzhanov, R. A.
    Gushchin, L. A.
    Zelensky, I. V.
    Nizov, V. A.
    Nizov, N. A.
    Sobgaida, D. A.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2024, 67 (02) : 121 - 125
  • [6] Photonic quantum memory using an intra-atomic frequency comb
    Teja, G. P.
    Simon, Christoph
    Goyal, Sandeep K.
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [7] Atomic-frequency-comb quantum memory via piecewise adiabatic passage
    Rubio, J. L.
    Viscor, D.
    Mompart, J.
    Ahufinger, V
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [8] Noise-free on-demand atomic frequency comb quantum memory
    Horvath, Sebastian P.
    Alqedra, Mohammed K.
    Kinos, Adam
    Walther, Andreas
    Dahlstrom, Jan Marcus
    Kroll, Stefan
    Rippe, Lars
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [9] Quantum memory based on a spatiospectral atomic comb
    Tian, Mingzhen
    Vega, Devin
    Dilles, Jacob
    PHYSICAL REVIEW A, 2013, 87 (04)
  • [10] Microwave quantum memory on a controlled frequency comb
    Petrovnin, K., V
    Perrninov, N. S.
    Sherstyukov, O. N.
    Moiseev, S. A.
    QUANTUM ELECTRONICS, 2018, 48 (10) : 898 - 901