Probability analysis on tunnels in heterogeneous strata based on borehole data-driven conditional random fields and convolutional neural network

被引:0
|
作者
Ma, Gaoyu [1 ]
He, Chuan [1 ]
He, Zhengshu [1 ]
Bai, Rongmin [2 ]
Xu, Guowen [2 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Intelligent Geotech & Tunnelling, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, MOE, Key Lab Transportat Tunnel Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Drilling data; Conditional random field; Convolutional Neural Network; Asymmetric support; Probability analysis; ROCK; MECHANISM;
D O I
10.1016/j.tust.2025.106402
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Tunnels in heterogeneous strata always encounter spatially varied geological formations, causing asymmetric responses and localized failure in the supporting structure. The homogeneity assumption for surrounding strata, commonly adopted in tunnel design and construction, will neglect the inherent spatial uncertainty of rock mass and lead to the overestimation in tunnel bearing capacity. The conventional stochastic calculations for analyzing tunnel performance in heterogeneous strata also fail to reflect the statistical asymmetry in mechanical behaviors of supporting structure. With the application of mechanized equipment with built-in sensors in drilling and blasting construction, rock parameters at borehole locations can be promptly derived through the drilling data. This systematic on-site monitoring necessitates a rational and stationary extrapolation using rock parameters from the excavation face to the surrounding strata, as the inversion results provide a more precise depiction of the properties of surrounding strata and enable the dynamic design for supporting structure during construction. Therefore, an innovative approach was proposed in this research to conduct probability analysis on the mechanical behaviors of tunnels in heterogeneous strata based on conditional random field models. The statistical characteristics of random variables in these fields were constrained by the derived rock parameters on the excavation face using Hoffman method. The probability distributions of mechanical behaviors were analyzed for tunnels with both symmetric and asymmetric anchor cable systems. In addition, a trained convolutional neural network (CNN) model was implemented to reduce the computational resources required in massive numerical simulations. The tunnel deformation at different circumferential locations can be predicted with an acceptable accuracy and minimal time consumption that significantly facilitated the probabilistic assessments.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Convolutional neural network based deep conditional random fields for stereo matching
    Wang, Zhi
    Zhu, Shiqiang
    Li, Yuehua
    Cui, Zhengzhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 739 - 750
  • [2] A novel construction method of convolutional neural network model based on data-driven
    Zou, Guo-feng
    Fu, Gui-xia
    Gao, Ming-liang
    Shen, Jin
    Yin, Li-ju
    Ben, Xian-ye
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6969 - 6987
  • [3] A novel construction method of convolutional neural network model based on data-driven
    Guo-feng Zou
    Gui-xia Fu
    Ming-liang Gao
    Jin Shen
    Li-ju Yin
    Xian-ye Ben
    Multimedia Tools and Applications, 2019, 78 : 6969 - 6987
  • [4] A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
    Wen, Long
    Li, Xinyu
    Gao, Liang
    Zhang, Yuyan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (07) : 5990 - 5998
  • [5] Probability based remaining capacity estimation using data-driven and neural network model
    Wang, Yujie
    Yang, Duo
    Zhang, Xu
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2016, 315 : 199 - 208
  • [6] Brain Tumor Segmentation Using a Fully Convolutional Neural Network with Conditional Random Fields
    Zhao, Xiaomei
    Wu, Yihong
    Song, Guidong
    Li, Zhenye
    Fan, Yong
    Zhang, Yazhuo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 : 75 - 87
  • [7] Data-driven reduced order model with temporal convolutional neural network
    Wu, Pin
    Sun, Junwu
    Chang, Xuting
    Zhang, Wenjie
    Arcucci, Rossella
    Guo, Yike
    Pain, Christopher C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 360
  • [8] A Data-Driven Method Based on Bidirectional Convolutional Current Neural Network to Detect Structural Damage
    Xue, Songling
    Su, Teng
    Xie, Qinghai
    Zhao, Xiaoqing
    Zong, Zhongling
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2024, 49 (1) : 579 - 595
  • [9] Image Semantic Segmentation Based on Convolutional Neural Network and Conditional Random Field
    Tao, Hu
    Li, Weihua
    Qin, Xianxiang
    Jia, Dan
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 568 - 572
  • [10] A data-driven neural network architecture for sentiment analysis
    Cano, Erion
    Morisio, Maurizio
    DATA TECHNOLOGIES AND APPLICATIONS, 2019, 53 (01) : 2 - 19