Look into the LITE in deep learning for time series classification

被引:0
|
作者
Ismail-Fawaz, Ali [1 ]
Devanne, Maxime [1 ]
Berretti, Stefano [2 ]
Weber, Jonathan [1 ]
Forestier, Germain [1 ,3 ]
机构
[1] Univ Haute Alsace, IRIMAS, Mulhouse, France
[2] Univ Florence, MICC, Florence, Italy
[3] Monash Univ, DSAI, Melbourne, Australia
关键词
Time series classification; Deep learning; Convolutional neural networks; DepthWise separable convolutions;
D O I
10.1007/s41060-024-00708-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models have been shown to be a powerful solution for Time Series Classification (TSC). State-of-the-art architectures, while producing promising results on the UCR and the UEA archives, present a high number of trainable parameters. This can lead to long training with high CO2 emission, power consumption and possible increase in the number of FLoating-point Operation Per Second (FLOPS). In this paper, we present a new architecture for TSC, the Light Inception with boosTing tEchnique (LITE) with only 2.34%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.34\%$$\end{document} of the number of parameters of the state-of-the-art InceptionTime model, while preserving performance. This architecture, with only 9, 814 trainable parameters due to the usage of DepthWise Separable Convolutions (DWSC), is boosted by three techniques: multiplexing, custom filters, and dilated convolution. The LITE architecture, trained on the UCR, is 2.78 times faster than InceptionTime and consumes 2.79 times less CO2 and power, while achieving an average accuracy of 84.62%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$84.62\%$$\end{document} compared to 84.91%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$84.91\%$$\end{document} with InceptionTime. To evaluate the performance of the proposed architecture on multivariate time series data, we adapt LITE to handle multivariate time series, we call this version LITEMV. To bring theory into application, we also conducted experiments using LITEMV on multivariate time series representing human rehabilitation movements, showing that LITEMV not only is the most efficient model but also the best performing for this application on the Kimore dataset, a skeleton-based human rehabilitation exercises dataset. Moreover, to address the interpretability of LITEMV, we present a study using Class Activation Maps to understand the classification decision taken by the model during evaluation.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Deep Learning for Haemodialysis Time Series Classification
    Leonardi, Giorgio
    Montani, Stefania
    Striani, Manuel
    ARTIFICIAL INTELLIGENCE IN MEDICINE: KNOWLEDGE REPRESENTATION AND TRANSPARENT AND EXPLAINABLE SYSTEMS, AIME 2019, 2019, 11979 : 50 - 64
  • [2] Classification of chaotic time series with deep learning
    Boulle, Nicolas
    Dallas, Vassilios
    Nakatsukasa, Yuji
    Samaddar, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
  • [3] Deep learning for time series classification: a review
    Hassan Ismail Fawaz
    Germain Forestier
    Jonathan Weber
    Lhassane Idoumghar
    Pierre-Alain Muller
    Data Mining and Knowledge Discovery, 2019, 33 : 917 - 963
  • [4] Deep learning for time series classification: a review
    Fawaz, Hassan Ismail
    Forestier, Germain
    Weber, Jonathan
    Idoumghar, Lhassane
    Muller, Pierre-Alain
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 917 - 963
  • [5] Ensemble Deep Learning for Biomedical Time Series Classification
    Jin, Lin-peng
    Dong, Jun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [6] Deep Multiple Metric Learning for Time Series Classification
    Chen, Zhi
    Liu, Yongguo
    Zhu, Jiajing
    Zhang, Yun
    Li, Qiaoqin
    Jin, Rongjiang
    He, Xia
    IEEE ACCESS, 2021, 9 : 17829 - 17842
  • [7] Data Augmentation for Time Series Classification with Deep Learning Models
    Pialla, Gautier
    Devanne, Maxime
    Weber, Jonathan
    Idoumghar, Lhassane
    Forestier, Germain
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2022, 2023, 13812 : 117 - 132
  • [8] A deep reinforcement learning approach for early classification of time series
    Martinez, C.
    Perrin, G.
    Ramasso, E.
    Rombaut, M.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2030 - 2034
  • [9] Hybrid deep learning approach for financial time series classification
    Assis, Carlos A. S.
    Machado, Eduardo J.
    Pereira, Adriano C. M.
    Carrano, Eduardo G.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2018, 10 (02): : 54 - 63
  • [10] A Survey on Hyperparameters Optimization of Deep Learning for Time Series Classification
    Fristiana, Ayuningtyas Hari
    Alfarozi, Syukron Abu Ishaq
    Permanasari, Adhistya Erna
    Pratama, Mahardhika
    Wibirama, Sunu
    IEEE ACCESS, 2024, 12 : 191162 - 191198