Machine learning framework for classification of Adenocarcinoma and Squamous cell carcinoma using lung microbiome dataset for their early diagnosis

被引:0
|
作者
Kashyap, Pragya [1 ]
Raj, Kalbhavi Vadhi [1 ]
Yadav, Pankaj [1 ]
机构
[1] Indian Institue Technol Jodhpur, Jodhpur, India
关键词
D O I
10.1183/13993003.congress-2024.OA1098
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Classification of Esophageal Adenocarcinoma, Esophageal Squamous Cell Carcinoma, and Stomach Adenocarcinoma Based on Machine Learning Algorithms
    Chen, Xiaoping
    Zheng, Lihui
    Yao, Jianqi
    Yang, Cheng-Fu
    SENSORS AND MATERIALS, 2021, 33 (08) : 2639 - 2654
  • [2] Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning
    Qi, Yafeng
    Yang, Lin
    Liu, Bangxu
    Liu, Li
    Liu, Yuhong
    Zheng, Qingfeng
    Liu, Dameng
    Luo, Jianbin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 265
  • [3] Prediction of early recurrence of lung squamous cell carcinoma using digital pathology assessed by machine learning
    Shimada, Yoshihisa
    Ohira, Tatsuo
    Kuroda, Masahiko
    Ikeda, Norihiko
    CANCER SCIENCE, 2022, 113 : 1041 - 1041
  • [4] Classification and survival prediction for early-stage lung adenocarcinoma and squamous cell carcinoma patients
    Tian, Suyan
    ONCOLOGY LETTERS, 2017, 14 (05) : 5464 - 5470
  • [5] Machine learning-based histological classification that predicts recurrence of lung squamous cell carcinoma
    Koike, Yutaro
    Aokage, Keiju
    Ikeda, Kosuke
    Nakai, Tokiko
    Tane, Kenta
    Miyoshi, Tomohiro
    Sugano, Masato
    Kojima, Motohiro
    Fujii, Satoshi
    Kuwata, Takeshi
    Ochiai, Atsushi
    Tanaka, Toshiyuki
    Suzuki, Kenji
    Tsuboi, Masahiro
    Ishii, Genichiro
    CANCER SCIENCE, 2021, 112 : 882 - 882
  • [6] A hybrid learning method for distinguishing lung adenocarcinoma and squamous cell carcinoma
    Swain, Anil Kumar
    Swetapadma, Aleena
    Rout, Jitendra Kumar
    Balabantaray, Bunil Kumar
    DATA TECHNOLOGIES AND APPLICATIONS, 2024, 58 (01) : 113 - 131
  • [7] Machine learning-based histological classification that predicts recurrence of peripheral lung squamous cell carcinoma
    Koike, Yutaro
    Aokage, Keiju
    Ikeda, Kosuke
    Nakai, Tokiko
    Tane, Kenta
    Miyoshi, Tomohiro
    Sugano, Masato
    Kojima, Motohiro
    Fujii, Satoshi
    Kuwata, Takeshi
    Ochiai, Atsushi
    Tanaka, Toshiyuki
    Suzuki, Kenji
    Tsuboi, Masahiro
    Ishii, Genichiro
    LUNG CANCER, 2020, 147 : 252 - 258
  • [8] Differences Between Squamous Cell Carcinoma and Adenocarcinoma of the Lung: Are Adenocarcinoma and Squamous Cell Carcinoma Prognostically Equal?
    Kawase, Akikazu
    Yoshida, Junji
    Ishii, Genichiro
    Nakao, Masayuki
    Aokage, Keiju
    Hishida, Tomoyuki
    Nishimura, Mitsuyo
    Nagai, Kanji
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2012, 42 (03) : 189 - 195
  • [9] Effect of combination of genomic variation-based machine learning and clinical pathology on accurate diagnosis of tumors: Lung adenocarcinoma and lung squamous cell carcinoma.
    Gu, Weiguang
    Wang, Haitao
    Zhuang, Mengxia
    Hao, Qing
    Wang, Zhizheng
    Liu, Wenjin
    Lu, Leilei
    Dong, Xiaowei
    Pang, Fei
    Qin, Hongli
    Wang, Kai
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [10] Early Detection of Lung Carcinoma Using Machine Learning
    Oliver, A. Sheryl
    Jayasankar, T.
    Sekar, K. R.
    Devi, T. Kalavathi
    Shalini, R.
    Poojalaxmi, S.
    Viswesh, N. G.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03): : 755 - 770