Survival and maximum of spectrally negative branching Lévy processes with absorption

被引:0
|
作者
Profeta, Christophe [1 ]
机构
[1] Univ Evry, Univ Paris Saclay, CNRS, Lab Math & Modelisat Evry, F-91037 Evry Courcouronnes, France
关键词
branching process; spectrally negative L & eacute; vy process; extreme values; QUASI-STATIONARY DISTRIBUTIONS; ASYMMETRIC LEVY PROCESSES; BROWNIAN-MOTION; DISPLACEMENT;
D O I
10.1214/24-ECP627
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a spectrally negative branching L & eacute;vy process where the particles undergo dyadic branching and are killed when entering the negative half-line. The purpose of this short note is to give conditions under which this process dies out a.s., and then study the asymptotics of its all-time maximum.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Maximal displacement of spectrally negative branching Lévy processes
    Profeta, Christophe
    BERNOULLI, 2024, 30 (02) : 961 - 982
  • [2] Maximum loss and maximum gain of spectrally negative Lévy processes
    Ceren Vardar-Acar
    Mine Çağlar
    Extremes, 2017, 20 : 301 - 308
  • [3] Maximum Drawdown and Drawdown Duration of Spectrally Negative Lévy Processes Decomposed at Extremes
    Ceren Vardar-Acar
    Mine Çağlar
    Florin Avram
    Journal of Theoretical Probability, 2021, 34 : 1486 - 1505
  • [4] Local Times for Spectrally Negative Lévy Processes
    Bo Li
    Xiaowen Zhou
    Potential Analysis, 2020, 52 : 689 - 711
  • [5] Generalized scale functions for spectrally negative L?vy processes
    Contreras, Jesus
    Rivero, Victor
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 645 - 663
  • [6] Smoothness of scale functions for spectrally negative L,vy processes
    Chan, T.
    Kyprianou, A. E.
    Savov, M.
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) : 691 - 708
  • [7] Smoothness of scale functions for spectrally negative Lévy processes
    T. Chan
    A. E. Kyprianou
    M. Savov
    Probability Theory and Related Fields, 2011, 150 : 691 - 708
  • [8] Ray Knight theorems for spectrally negative Lévy processes
    Rivero, Victor
    Contreras, Jesus
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [9] On an Explicit Skorokhod Embedding for Spectrally Negative L,vy Processes
    Obloj, Jan
    Pistorius, Martijn
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) : 418 - 440
  • [10] On an Explicit Skorokhod Embedding for Spectrally Negative Lévy Processes
    Jan Obłój
    Martijn Pistorius
    Journal of Theoretical Probability, 2009, 22 : 418 - 440