ACL-Net: Semi-supervised Polyp Segmentation via Affinity Contrastive Learning

被引:0
|
作者
Wu, Huisi [1 ]
Xie, Wende [1 ]
Lin, Jingyin [1 ]
Guo, Xinrong [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic polyp segmentation from colonoscopy images is an essential prerequisite for the development of computer-assisted therapy. However, the complex semantic information and the blurred edges of polyps make segmentation extremely difficult. In this paper, we propose a novel semi-supervised polyp segmentation framework using affinity contrastive learning (ACL-Net), which is implemented between student and teacher networks to consistently refine the pseudo-labels for semi-supervised polyp segmentation. By aligning the affinity maps between the two branches, a better polyp region activation can be obtained to fully exploit the appearance-level context encoded in the feature maps, thereby improving the capability of capturing not only global localization and shape context, but also the local textural and boundary details. By utilizing the rich inter-image affinity context and establishing a global affinity context based on the memory bank, a cross-image affinity aggregation (CAA) module is also implemented to further refine the affinity aggregation between the two branches. By continuously and adaptively refining pseudo-labels with optimized affinity, we can improve the semi-supervised polyp segmentation based on the mutually reinforced knowledge interaction among contrastive learning and consistency learning iterations. Extensive experiments on five benchmark datasets, including Kvasir-SEG, CVC-ClinicDB, CVC-300, ColonDB and ETIS, demonstrate the effectiveness and superiority of our method. Codes are available at https://github.com/xiewende/ACL-Net.
引用
收藏
页码:2812 / 2820
页数:9
相关论文
共 50 条
  • [1] Semi-supervised Semantic Segmentation via Prototypical Contrastive Learning
    Chen, Zenggui
    Lian, Zhouhui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6696 - 6705
  • [2] SemiPolypSeg: Leveraging Cross-Pseudo Supervision and Contrastive Learning for Semi-Supervised Polyp Segmentation
    Guo, Ping
    Liu, Guoping
    Liu, Huan
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [3] Semi-Supervised Metallographic Image Segmentation via Consistency Regularization and Contrastive Learning
    Chen, Fan
    Zhang, Yiming
    Guo, Yaolin
    Liu, Zhen
    Du, Shiyu
    IEEE ACCESS, 2023, 11 : 87398 - 87408
  • [4] Adversarial Dense Contrastive Learning for Semi-Supervised Semantic Segmentation
    Wang, Ying
    Xuan, Ziwei
    Ho, Chiuman
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4459 - 4471
  • [5] ASCL: Accelerating semi-supervised learning via contrastive learning
    Liu, Haixiong
    Li, Zuoyong
    Wu, Jiawei
    Zeng, Kun
    Hu, Rong
    Zeng, Wei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (28):
  • [6] Semi-supervised medical image segmentation via hard positives oriented contrastive learning
    Tang, Cheng
    Zeng, Xinyi
    Zhou, Luping
    Zhou, Qizheng
    Wang, Peng
    Wu, Xi
    Ren, Hongping
    Zhou, Jiliu
    Wang, Yan
    PATTERN RECOGNITION, 2024, 146
  • [7] Semi-supervised CT image segmentation via contrastive learning based on entropy constraints
    Xiao, Zhiyong
    Sun, Hao
    Liu, Fei
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (05) : 1023 - 1035
  • [8] Teeth Segmentation via Semi-Supervised Learning
    Gao, Yonghui
    Li, Xiaoxiao
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 558 - 563
  • [9] DCL-NET: DUAL CONTRASTIVE LEARNING NETWORK FOR SEMI-SUPERVISED MULTI-ORGAN SEGMENTATION
    Wen, Lu
    Feng, Zhenghao
    Hou, Yun
    Wang, Peng
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1876 - 1880
  • [10] CONTRASTIVE SEMI-SUPERVISED LEARNING FOR ASR
    Xiao, Alex
    Fuegen, Christian
    Mohamed, Abdelrahman
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3870 - 3874