Score Operator Newton Transport

被引:0
|
作者
Chandramoorthy, Nisha [1 ]
Schafer, Florian [1 ]
Marzouk, Youssef [2 ]
机构
[1] Georgia Tech, Atlanta, GA 30332 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new approach for sampling and Bayesian computation that uses the score of the target distribution to construct a transport from a given reference distribution to the target. Our approach is an infinite-dimensional Newton method, involving an elliptic PDE, for finding a zero of a "scoreresidual" operator. We prove sufficient conditions for convergence to a valid transport map. Our Newton iterates can be computed by exploiting fast solvers for elliptic PDEs, resulting in new algorithms for Bayesian inference and other sampling tasks. We identify elementary settings where score operator Newton transport achieves fast convergence while avoiding mode collapse.
引用
收藏
页数:15
相关论文
共 50 条