Automated Spinal MRI Labelling from Reports Using a Large Language Model

被引:0
|
作者
Park, Robin Y. [1 ]
Windsor, Rhydian [1 ]
Jamaludin, Amir [1 ]
Zisserman, Andrew [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Visual Geometry Grp, Oxford, England
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
Radiological reports; Cancer; Metastasis; Stenosis;
D O I
10.1007/978-3-031-72086-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a general pipeline to automate the extraction of labels from radiology reports using large language models, which we validate on spinal MRI reports. The efficacy of our method is measured on two distinct conditions: spinal cancer and stenosis. Using open-source models, our method surpasses GPT-4 on a held-out set of reports. Furthermore, we show that the extracted labels can be used to train an imaging model to classify the identified conditions in the accompanying MR scans. Both the cancer and stenosis classifiers trained using automated labels achieve comparable performance to models trained using scans manually annotated by clinicians. Code can be found at https://github.com/robinyjpark/AutoLabelClassifier.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [1] Automated Labelling using an Attention model for Radiology reports of MRI scans (ALARM)
    Wood, David A.
    Lynch, Jeremy
    Kafiabadi, Sina
    Guilhem, Emily
    Al Busaidi, Aisha
    Montvila, Antanas
    Varsavsky, Thomas
    Siddiqui, Juveria
    Gadapa, Naveen
    Townend, Matthew
    Kiik, Martin
    Patel, Keena
    Barker, Gareth
    Ourselin, Sebastian
    Cole, James H.
    Booth, Thomas C.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 811 - 826
  • [2] Automated classification of brain MRI reports using fine-tuned large language models
    Kanzawa, Jun
    Yasaka, Koichiro
    Fujita, Nana
    Fujiwara, Shin
    Abe, Osamu
    NEURORADIOLOGY, 2024, 66 (12) : 2177 - 2183
  • [3] Automated labelling of radiology reports using natural language processing: Comparison of traditional and newer methods
    Chng, Seo Yi
    Tern, Paul J. W.
    Kan, Matthew R. X.
    Cheng, Lionel T. E.
    HEALTH CARE SCIENCE, 2023, 2 (02): : 120 - 128
  • [4] Automated Classification of Breast Cancer TN Stage from Pathology Reports Using Large Language Models
    Li, B.
    Parker, M.
    Green, W. R.
    McBeth, R. A.
    MEDICAL PHYSICS, 2024, 51 (09) : 6592 - 6592
  • [5] AUTOMATED ABSTRACTION OF PULMONARY EMBOLISM CONCEPTS FROM CT REPORTS WITH LARGE LANGUAGE MODELS
    Alwakeel, Mahmoud
    Buck, Emory
    Martin, Jon
    Mehta, Sachin
    Dahhan, Talal
    Matos, Joao
    Pei, Jian
    Lindsell, Christopher
    Podgoreanu, Mihai
    Wong, An-Kwok
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [7] Structuring Semi-structured Data from Building Inspection Reports Using a Large Language Model
    Svennberg, Kaisa
    Ekman, Jan
    MULTIPHYSICS AND MULTISCALE BUILDING PHYSICS, IBPC 2024, VOL 3, 2025, 554 : 508 - 513
  • [8] Discerning Tumor Status from Unstructured MRI Reports—Completeness of Information in Existing Reports and Utility of Automated Natural Language Processing
    Lionel T. E. Cheng
    Jiaping Zheng
    Guergana K. Savova
    Bradley J. Erickson
    Journal of Digital Imaging, 2010, 23 : 119 - 132
  • [9] Using a Longformer Large Language Model for Segmenting Unstructured Cancer Pathology Reports
    Fung, Damien
    Arbour, Gregory
    Malik, Krisha
    Muzio, Kaitlin
    Ng, Raymond
    JCO CLINICAL CANCER INFORMATICS, 2025, 9
  • [10] Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports
    Zhang, Lu
    Liu, Mingqian
    Wang, Lingyun
    Zhang, Yaping
    Xu, Xiangjun
    Pan, Zhijun
    Feng, Yan
    Zhao, Jue
    Zhang, Lin
    Yao, Gehong
    Chen, Xu
    Xie, Xueqian
    RADIOLOGY, 2024, 312 (03)