Characterization of SARS-CoV-2 Entry Genes in Skeletal Muscle and Impacts of In Vitro Versus In Vivo Infection

被引:0
|
作者
Bhattarai, Salyan [1 ,2 ,3 ]
Kaufmann, Eva [1 ,2 ,4 ]
Liang, Feng [1 ,2 ,3 ]
Zheng, Yumin [1 ,2 ]
Gusev, Ekaterina [1 ,2 ,3 ]
Hamid, Qutayba [1 ,2 ,3 ,5 ]
Ding, Jun [1 ,2 ,3 ]
Divangahi, Maziar [1 ,2 ,3 ]
Petrof, Basil J. [1 ,2 ,3 ]
机构
[1] McGill Univ, Meakins Christie Labs, Res Inst, Hlth Ctr, Montreal, PQ, Canada
[2] McGill Univ, Translat Res Resp Dis Program, Res Inst, Hlth Ctr, Montreal, PQ, Canada
[3] McGill Univ, Dept Med, Resp Div, Montreal, PQ, Canada
[4] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON, Canada
[5] Univ Sharjah, Sharjah Inst Med Res, Sharjah, U Arab Emirates
基金
加拿大健康研究院;
关键词
ACE2; atrophy; COVID-19; diaphragm; viral entry; IL-6;
D O I
10.1002/jcsm.13705
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundCOVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.MethodsWe used in silico bioinformatics analysis of published human single cell RNA-seq datasets, as well as direct qPCR examination of human myotubes and diaphragm biopsies, to assess expression of key genes involved in SARS-CoV-2 cellular entry. In Vitro, we determined the ability of SARS-CoV-2 to directly infect myogenic cells and employed qPCR to assess the impact on muscle atrophy pathway genes (ubiquitin-proteasome, autophagy). In vivo, the diaphragm and quadriceps of Roborovski hamsters with SARS-CoV-2 respiratory infection were examined at day 3 post-inoculation to evaluate the relationship between atrophy pathway and SARS-CoV-2 transcripts by qPCR, as well as histological measurements of myofibre morphology.ResultsAngiotensin converting enzyme 2 (ACE2), the primary receptor for SARS-CoV-2, as well as cooperating proteases (furin, cathepsins B and L), are expressed by myofibres. ACE2 expression was increased 5-fold (p = 0.01) in the diaphragms of mechanically ventilated human subjects compared to controls. In Vitro, a time-dependent increase of SARS-CoV-2 transcript levels was observed in myotubes directly exposed to the virus (p = 0.002). This was associated with downregulation of the ubiquitin ligase MuRF1 (by 64%, p = 0.002) and the autophagy gene LC3B (by 31%, p = 0.009). In contrast, in vivo infection led to upregulation of MuRF1 in quadriceps (23-fold, p = 0.0007) and autophagy genes in both quadriceps (5.2-fold for Gabarapl1, p = 0.03; 7-fold for p62, p = 0.0002) and diaphragm (2.2-fold for Gabarapl1, p = 0.03; 2.3-fold for p62, p = 0.057). In infected hamsters the diaphragm lacked viral transcripts but exhibited atrophy (48% decrease in myofibre area; p = 0.02), whereas the quadriceps lacked myofibre atrophy despite elevated viral transcripts in the muscle.ConclusionsAlthough myogenic cells express the genes required for SARS-CoV-2 entry and can be directly infected, there was no evident relationship between viral transcript levels and manifestations of atrophy, either in vitro or in vivo. Our results do not support direct myofibre infection by SARS-CoV-2 as a likely cause of atrophy in COVID-19.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir
    Maki Kiso
    Seiya Yamayoshi
    Shun Iida
    Yuri Furusawa
    Yuichiro Hirata
    Ryuta Uraki
    Masaki Imai
    Tadaki Suzuki
    Yoshihiro Kawaoka
    Nature Communications, 14
  • [2] In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir
    Kiso, Maki
    Yamayoshi, Seiya
    Iida, Shun
    Furusawa, Yuri
    Hirata, Yuichiro
    Uraki, Ryuta
    Imai, Masaki
    Suzuki, Tadaki
    Kawaoka, Yoshihiro
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir
    Kiso, Maki
    Furusawa, Yuri
    Uraki, Ryuta
    Imai, Masaki
    Yamayoshi, Seiya
    Kawaoka, Yoshihiro
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir
    Maki Kiso
    Yuri Furusawa
    Ryuta Uraki
    Masaki Imai
    Seiya Yamayoshi
    Yoshihiro Kawaoka
    Nature Communications, 14
  • [5] Tumor markers as an entry for SARS-CoV-2 infection?
    Xia, Pu
    Dubrovska, Anna
    FEBS JOURNAL, 2020, 287 (17) : 3677 - 3680
  • [6] Muscle involvement in SARS-CoV-2 infection
    Pitscheider, L.
    Karolyi, M.
    Burkert, F. R.
    Helbok, R.
    Wanschitz, J. V.
    Horlings, C.
    Pawelka, E.
    Omid, S.
    Traugott, M.
    Seitz, T.
    Zoufaly, A.
    Lindeck-Pozza, E.
    Woll, E.
    Beer, R.
    Seiwald, S.
    Bellmann-Weiler, R.
    Hegen, H.
    Loscher, W. N.
    EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 (10) : 3411 - 3417
  • [7] SARS-CoV-2 Infection Studied In Vitro
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2021, 49 (1-2): : 5 - 6
  • [8] Common Genetic Variation in Humans Impacts In Vitro Susceptibility to SARS-CoV-2 Infection
    Dobrindt, Kristina
    Hoagland, Daisy A.
    Seah, Carina
    Kassim, Bibi
    O'Shea, Callan P.
    Murphy, Aleta
    Iskhakova, Marina
    Fernando, Michael B.
    Powell, Samuel K.
    Deans, P. J. Michael
    Javidfar, Ben
    Peter, Cyril
    Moller, Rasmus
    Uhl, Skyler A.
    Garcia, Meilin Fernandez
    Kimura, Masaki
    Iwasawa, Kentaro
    Crary, John F.
    Kotton, Darrell N.
    Takebe, Takanori
    Huckins, Laura M.
    tenOever, Benjamin R.
    Akbarian, Schahram
    Brennand, Kristen J.
    STEM CELL REPORTS, 2021, 16 (03): : 505 - 518
  • [9] Preliminary report of in vitro and in vivo effectiveness of dornase alfa on SARS-CoV-2 infection
    Okur, H. K.
    Yalcin, K.
    Tastan, C.
    Demir, S.
    Yurtsever, B.
    Karakus, G. S.
    Kancagi, D. D.
    Abanuz, S.
    Seyis, U.
    Zengin, R.
    Hemsinlioglu, C.
    Kara, M.
    Yildiz, M. E.
    Deliceo, E.
    Birgen, N.
    Pelit, N. B.
    Cuhadaroglu, C.
    Kocagoz, A. S.
    Ovali, E.
    NEW MICROBES AND NEW INFECTIONS, 2020, 37
  • [10] In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies
    Li, Dapeng
    Edwards, Robert J.
    Manne, Kartik
    Martinez, David R.
    Schafer, Alexandra
    Alam, S. Munir
    Wiehe, Kevin
    Lu, Xiaozhi
    Parks, Robert
    Sutherland, Laura L.
    Oguin, Thomas H., III
    McDanal, Charlene
    Perez, Lautaro G.
    Mansouri, Katayoun
    Gobeil, Sophie M. C.
    Janowska, Katarzyna
    Stalls, Victoria
    Kopp, Megan
    Cai, Fangping
    Lee, Esther
    Foulger, Andrew
    Hernandez, Giovanna E.
    Sanzone, Aja
    Tilahun, Kedamawit
    Jiang, Chuancang
    Tse, Longping, V
    Bock, Kevin W.
    Minai, Mahnaz
    Nagata, Bianca M.
    Cronin, Kenneth
    Gee-Lai, Victoria
    Deyton, Margaret
    Barr, Maggie
    Von Holle, Tarra
    Macintyre, Andrew N.
    Stover, Erica
    Feldman, Jared
    Hauser, Blake M.
    Caradonna, Timothy M.
    Scobey, Trevor D.
    Rountree, Wes
    Wang, Yunfei
    Moody, M. Anthony
    Cain, Derek W.
    DeMarco, C. Todd
    Denny, Thomas N.
    Woods, Christopher W.
    Petzold, Elizabeth W.
    Schmidt, Aaron G.
    Teng, I-Ting
    CELL, 2021, 184 (16) : 4203 - +