Las Vegas algorithm in the prediction of intrinsic solubility of drug-like compounds

被引:0
|
作者
Veselinovic, Aleksandar M. [1 ]
Toropova, Alla P. [2 ]
Toropov, Andrey A. [2 ]
Roncaglioni, Alessandra [2 ]
Benfenati, Emilio [2 ]
机构
[1] Univ Nis, Dept Chem, Fac Med, Bulevar Dr Zorana Dindica 81, Nish 18000, Serbia
[2] Ist Ric Farmacolog Mario Negri IRCCS, Dept Environm Hlth Sci, Via Mario Negri 2, I-20156 Milan, Italy
来源
JOURNAL OF MOLECULAR GRAPHICS & MODELLING | 2025年 / 137卷
关键词
Las Vegas algorithm; Intrinsic solubility; QSAR; SMILES; CORAL software; AQUEOUS SOLUBILITY; DELIVERY REVIEWS; QSAR MODELS; VALIDATION; SYSTEM;
D O I
10.1016/j.jmgm.2025.109004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A randomized algorithm that always succeeds in producing a correct output, but whose running time depends on random events is known as a Las Vegas algorithm. In this study, the Las Vegas algorithm aimed to improve QSPR models of intrinsic solubility of drug-like compounds obtained by the Monte Carlo method. Corresponding computational experiments were carried out with the CORAL software. The developed QSPR models were rigorously validated using a battery of statistical parameters, demonstrating excellent predictive ability and robustness. It has been shown, that the Las Vegas algorithm is a suitable way to improve the predictive potential of models obtained with the Monte Carlo technique. Additionally, the study identified key molecular fragments derived from the SMILES notation descriptors that influence the intrinsic solubility (increase or decrease). Overall, this work underscores the efficacy of the Monte Carlo method optimization with applied Las Vegas algorithm in constructing conformation-independent QSPR models with strong predictive power for prediction of intrinsic solubility of drug-like compounds.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] QSPR prediction of aqueous solubility of drug-like organic compounds
    Ghasemi, Jahanbakhsh
    Saaidpour, Saadi
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2007, 55 (04) : 669 - 674
  • [2] Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability?
    Lovric, Mario
    Pavlovic, Kristina
    Zuvela, Petar
    Spataru, Adrian
    Lucic, Bono
    Kern, Roman
    Wong, Ming Wah
    JOURNAL OF CHEMOMETRICS, 2021, 35 (7-8)
  • [3] New QSPR study for the prediction of aqueous solubility of drug-like compounds
    Duchowicz, Pablo R.
    Talevi, Alan
    Bruno-Blanch, Luis E.
    Castro, Eduardo A.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2008, 16 (17) : 7944 - 7955
  • [4] Computational aqueous solubility prediction for drug-like compounds in congeneric series
    Du-Cuny, Lei
    Huwyler, Joerg
    Wiese, Michael
    Kansy, Manfred
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2008, 43 (03) : 501 - 512
  • [5] Prediction of the Corneal Permeability of Drug-Like Compounds
    Heidi Kidron
    Kati-Sisko Vellonen
    Eva M. del Amo
    Anita Tissari
    Arto Urtti
    Pharmaceutical Research, 2010, 27 : 1398 - 1407
  • [6] Prediction of the Corneal Permeability of Drug-Like Compounds
    Kidron, Heidi
    Vellonen, Kati-Sisko
    del Amo, Eva M.
    Tissari, Anita
    Urtti, Arto
    PHARMACEUTICAL RESEARCH, 2010, 27 (07) : 1398 - 1407
  • [7] QSAR-based solubility model for drug-like compounds
    Gozalbes, Rafael
    Pineda-Lucena, Antonio
    BIOORGANIC & MEDICINAL CHEMISTRY, 2010, 18 (19) : 7078 - 7084
  • [8] Aqueous and cosolvent solubility data for drug-like organic compounds
    Erik Rytting
    Kimberley A. Lentz
    Xue-Qing Chen
    Feng Qian
    Srini Venkatesh
    The AAPS Journal, 7
  • [9] DIAGNOSTIC OF A QSPR MODEL: AQUEOUS SOLUBILITY OF DRUG-LIKE COMPOUNDS
    Bolboaca, Sorana D.
    Jaentschi, Lorentz
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2010, 55 (04): : 69 - 76
  • [10] Aqueous and cosolvent solubility data for drug-like organic compounds
    Rytting, E
    Lentz, KA
    Chen, XQ
    Qian, F
    Venkatesh, S
    AAPS JOURNAL, 2005, 7 (01): : E78 - E105