Scalable couplings for the random walk Metropolis algorithm

被引:0
|
作者
Papp, Tamas P. [1 ]
Sherlock, Chris [2 ]
机构
[1] Univ Lancaster, STOR I Ctr Doctoral Training, Lancaster, England
[2] Univ Lancaster, Sch Math Sci, Lancaster, England
基金
英国工程与自然科学研究理事会;
关键词
couplings; Markov chain Monte Carlo methods; ODE limit; optimal scaling; MONTE-CARLO; CONVERGENCE; REGRESSION;
D O I
10.1093/jrsssb/qkae113
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There has been a recent surge of interest in coupling methods for Markov chain Monte Carlo algorithms: they facilitate convergence quantification and unbiased estimation, while exploiting embarrassingly parallel computing capabilities. Motivated by these, we consider the design and analysis of couplings of the random walk Metropolis algorithm which scale well with the dimension of the target measure. Methodologically, we introduce a low-rank modification of the synchronous coupling that is provably optimally contractive in standard high-dimensional asymptotic regimes. We expose a shortcoming of the reflection coupling, the state of the art at the time of writing, and we propose a modification which mitigates the issue. Our analysis bridges the gap to the optimal scaling literature and builds a framework of asymptotic optimality which may be of independent interest. We illustrate the applicability of our proposed couplings, and the potential for extending our ideas, with various numerical experiments.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Adaptive proposal distribution for random walk Metropolis algorithm
    Haario, H
    Saksman, E
    Tamminen, J
    COMPUTATIONAL STATISTICS, 1999, 14 (03) : 375 - 395
  • [2] Adaptive proposal distribution for random walk Metropolis algorithm
    Heikki Haario
    Eero Saksman
    Johanna Tamminen
    Computational Statistics, 1999, 14 : 375 - 395
  • [3] Diffusion limit for the random walk Metropolis algorithm out of stationarity
    Kuntz, Juan
    Ottobre, Michela
    Stuart, Andrew M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1599 - 1648
  • [4] DIFFUSION LIMITS OF THE RANDOM WALK METROPOLIS ALGORITHM IN HIGH DIMENSIONS
    Mattingly, Jonathan C.
    Pillai, Natesh S.
    Stuart, Andrew M.
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (03): : 881 - 930
  • [5] ASYMPTOTIC ANALYSIS OF THE RANDOM WALK METROPOLIS ALGORITHM ON RIDGED DENSITIES
    Beskos, Alexandros
    Roberts, Gareth
    Thiery, Alexandre
    Pillai, Natesh
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 2966 - 3001
  • [6] A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy
    Alsolami, Maryam
    Mascagni, Michael
    MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (02): : 161 - 171
  • [7] Accelerating adaptation in the adaptive Metropolis-Hastings random walk algorithm
    Spencer, Simon E. F.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (03) : 468 - 484
  • [8] A guided walk Metropolis algorithm
    PAUL GUSTAFSON
    Statistics and Computing, 1998, 8 : 357 - 364
  • [9] A guided walk Metropolis algorithm
    Gustafson, P
    STATISTICS AND COMPUTING, 1998, 8 (04) : 357 - 364
  • [10] VARIABLE TRANSFORMATION TO OBTAIN GEOMETRIC ERGODICITY IN THE RANDOM-WALK METROPOLIS ALGORITHM
    Johnson, Leif T.
    Geyer, Charles J.
    ANNALS OF STATISTICS, 2012, 40 (06): : 3050 - 3076