Using Large Language Models to Generate Educational Materials on Childhood Glaucoma

被引:3
|
作者
Dihan, Qais [1 ,2 ]
Chauhan, Muhammad z. [2 ]
Eleiwa, Taher k. [3 ]
Hassan, Amr k. [4 ]
Sallam, Ahmed b. [2 ,5 ]
Khouri, Albert s. [6 ]
Chang, Ta c. [7 ]
Elhusseiny, Abdelrahman m. [2 ,8 ]
机构
[1] Chicago Med Sch, Dept Med, N Chicago, IL USA
[2] Univ Arkansas Med Sci, Harvey & Bernice Jones Eye Inst, Dept Ophthalmol, Little Rock, AR USA
[3] Univ Arkansas Med Sci, Harvey & Bernice Jones Eye Inst, Benha, AR USA
[4] South Valley Univ, Fac Med, Dept Ophthalmol, Qena, Egypt
[5] Ain Shams Univ, Fac Med, Dept Ophthalmol, Cairo, Egypt
[6] Rutgers New Jersey Med Sch, Inst Ophthalmol & Visual Sci ASK, Newark, NJ USA
[7] Univ Miami, Bascom Palmer Eye Inst, Dept Ophthalmol, Miller Sch Med, Miami, FL USA
[8] Harvard Med Sch, Boston Childrens Hosp, Dept Ophthalmol, Boston, MA USA
关键词
FOLLOW-UP; READABILITY; INFORMATION; ADHERENCE; BARRIERS; QUALITY; CARE;
D O I
10.1016/j.ajo.2024.04.004
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To evaluate the quality, readability, and accuracy of large language model (LLM)-generated patient education materials (PEMs) on childhood glaucoma, and their ability to improve existing the readability of online information. Design: Cross-sectional comparative study. Methods: We evaluated responses of ChatGPT-3.5, ChatGPT-4, and Bard to 3 separate prompts requesting that they write PEMs on "childhood glaucoma." Prompt A required PEMs be "easily understandable by the average American." Prompt B required that PEMs be written "at a 6th-grade level using Simple Measure of Gobbledygook (SMOG) readability formula." We then compared responses' quality (DISCERN questionnaire, Patient Education Materials Assessment Tool [PEMAT]), readability (SMOG, Flesch-Kincaid Grade Level [FKGL]), and accuracy (Likert Misinformation scale). To assess the improvement of readability for existing online information, Prompt C requested that LLM rewrite 20 resources from a Google search of keyword "childhood glaucoma" to the American Medical Association-recommended "6th-grade level." Rewrites were compared on key metrics such as readability, complex words (>= 3 syllables), and sentence count. Results: All 3 LLMs generated PEMs that were of high quality, understandability, and accuracy (DISCERN >= 4, >= 70% PEMAT understandability, Misinformation score = 1). Prompt B responses were more readable than Prompt A responses for all 3 LLM (P <= .001). ChatGPT-4 generated the most readable PEMs compared to ChatGPT-3.5 and Bard (P <= .001). Although Prompt C responses showed consistent reduction of mean SMOG and FKGL scores, only ChatGPT-4 achieved the specified 6th-grade reading level (4.8 +/- 0.8 and 3.7 +/- 1.9, respectively). Conclusions:<bold> </bold>LLMs can serve as strong supplemental tools in generating high-quality, accurate, and novel PEMs, and improving the readability of existing PEMs on childhood glaucoma.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 50 条
  • [1] The Use of Large Language Models to Generate Education Materials about Uveitis
    Kianian, Reza
    Sun, Deyu
    Crowell, Eric L.
    Tsui, Edmund
    OPHTHALMOLOGY RETINA, 2024, 8 (02): : 195 - 201
  • [2] Promises and Pitfalls: Using Large Language Models to Generate Visualization Items
    Cui, Yuan
    Ge, Lily W.
    Ding, Yiren
    Harrison, Lane
    Yang, Fumeng
    Kay, Matthew
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2025, 31 (01) : 1094 - 1104
  • [3] Using Large Language Models to Generate JUnit Tests: An Empirical Study
    Siddiq, Mohammed Latif
    Santos, Joanna C. S.
    Tanvir, Ridwanul Hasan
    Ulfat, Noshin
    Al Rifat, Fahmid
    Lopes, Vinicius Carvalho
    PROCEEDINGS OF 2024 28TH INTERNATION CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2024, 2024, : 313 - 322
  • [4] Enabling Large Language Models to Generate Text with Citations
    Gao, Tianyu
    Yen, Howard
    Yu, Jiatong
    Chen, Danqi
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 6465 - 6488
  • [5] Can large language models generate geospatial code?
    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
    不详
    arXiv, 1600,
  • [6] CAN LARGE LANGUAGE MODELS GENERATE CONCEPTUAL HEALTH ECONOMIC MODELS?
    Chhatwal, J.
    Yildirim, I
    Balta, D.
    Ermis, T.
    Tenkin, S.
    Samur, S.
    Ayer, T.
    VALUE IN HEALTH, 2024, 27 (06) : S123 - S123
  • [7] Using Large Language Models to Develop Readability Formulas for Educational Settings
    Crossley, Scott
    Choi, Joon Suh
    Scherber, Yanisa
    Lucka, Mathis
    ARTIFICIAL INTELLIGENCE IN EDUCATION. POSTERS AND LATE BREAKING RESULTS, WORKSHOPS AND TUTORIALS, INDUSTRY AND INNOVATION TRACKS, PRACTITIONERS, DOCTORAL CONSORTIUM AND BLUE SKY, AIED 2023, 2023, 1831 : 422 - 427
  • [8] Using large language models to generate baseball spray charts in the absence of numerical data
    Michielssen, Senne
    Maloof, Adam
    Haumacher, Joe
    Dreger, Alexander
    Bonicki, Kyle
    Hallgren, Karl
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART P-JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY, 2024,
  • [9] Exploring Large Language Models to generate Easy to Read content
    Martinez, Paloma
    Ramos, Alberto
    Moreno, Lourdes
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [10] Evaluating the Ability of Large Language Models to Generate Motivational Feedback
    Gaeta, Angelo
    Orciuoli, Francesco
    Pascuzzo, Antonella
    Peduto, Angela
    GENERATIVE INTELLIGENCE AND INTELLIGENT TUTORING SYSTEMS, PT I, ITS 2024, 2024, 14798 : 188 - 201