UAV autonomous obstacle avoidance via causal reinforcement learning

被引:0
|
作者
Sun, Tao [1 ]
Gu, Jiaojiao [1 ]
Mou, Junjie [1 ]
机构
[1] Naval Aeronaut Univ, Yantai 264001, Peoples R China
关键词
Unmanned aerial vehicles (UAVs); Obstacle avoidance; Navigation; Causal inference; Reinforcement learning; SCALE ESTIMATION;
D O I
10.1016/j.displa.2025.102966
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The role of unmanned aerial vehicles (UAVs) in everyday life is becoming increasingly important, and there is a growing demand for UAVs to autonomously perform obstacle avoidance and navigation tasks. Traditional UAV navigation methods typically divide the navigation problem into three stages: perception, mapping, and path planning. However, this approach significantly increases processing delays, causing UAVs to lose their agility advantage. In this paper, we propose a causal reinforcement learning-based end-to-end navigation strategy that directly learns from data, bypassing the explicit mapping and planning steps, thus enhancing responsiveness. To address the issue where using a continuous action space prevents the agent from learning effective experiences from past actions, we introduce an Actor-Critic method with a fixed horizontal plane and a discretized action space. This approach enhances the efficiency of sampling from the experience replay buffer and stabilizes the optimization process, ultimately improving the success rate of the reinforcement learning algorithm in UAV obstacle avoidance and navigation tasks. Furthermore, to overcome the limited generalization capability of end-to-end methods, we incorporate causal inference into the reinforcement learning training process. This step mitigates overfitting caused by insufficient interaction with the environment during training, thereby increasing the success rate of UAVs in performing obstacle avoidance and navigation tasks in unfamiliar environments. We validate the effectiveness of causal inference in improving the generalization capability of the reinforcement learning algorithm by using convergence steps in the training environment and navigation success rates of random targets in the testing environment as quantitative metrics. The results demonstrate that causal inference can effectively reduce overfitting of the policy network to the training environment.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Autonomous obstacle avoidance of UAV based on deep reinforcement learning
    Yang, Songyue
    Yu, Guizhen
    Meng, Zhijun
    Wang, Zhangyu
    Li, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3323 - 3335
  • [2] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
    Xu, Guoqiang
    Jiang, Weilai
    Wang, Zhaolei
    Wang, Yaonan
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (04)
  • [3] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
    Guoqiang Xu
    Weilai Jiang
    Zhaolei Wang
    Yaonan Wang
    Journal of Intelligent & Robotic Systems, 2022, 104
  • [4] Real-time obstacle avoidance with deep reinforcement learning * Three-Dimensional Autonomous Obstacle Avoidance for UAV
    Yang, Songyue
    Meng, Zhijun
    Chen, Xuzhi
    Xie, Ronglei
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 324 - 329
  • [5] Autonomous obstacle avoidance and target tracking of UAV: Transformer for observation sequence in reinforcement learning
    Jiang, Weilai
    Cai, Tianqing
    Xu, Guoqiang
    Wang, Yaonan
    KNOWLEDGE-BASED SYSTEMS, 2024, 290
  • [6] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Meta-Reinforcement Learning
    Jiang W.
    Wu J.
    Wang Y.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2022, 49 (06): : 101 - 109
  • [7] Autonomous Vehicle for Obstacle Detection and Avoidance Using Reinforcement Learning
    Arvind, C. S.
    Senthilnath, J.
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 1, 2020, 1048 : 55 - 66
  • [8] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Prashant Bhopale
    Faruk Kazi
    Navdeep Singh
    Journal of Marine Science and Application, 2019, 18 : 228 - 238
  • [9] Simulation and Transfer of Reinforcement Learning Algorithms for Autonomous Obstacle Avoidance
    Lenk, Max
    Hilsendegen, Paula
    Mueller, Silvan Michael
    Rettig, Oliver
    Strand, Marcus
    INTELLIGENT AUTONOMOUS SYSTEMS 15, IAS-15, 2019, 867 : 401 - 413
  • [10] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Bhopale, Prashant
    Kazi, Faruk
    Singh, Navdeep
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (02) : 228 - 238