A global Swin-Unet Sentinel-2 surface reflectance-based cloud and cloud shadow detection algorithm for the NASA Harmonized Landsat Sentinel-2 (HLS) dataset

被引:0
|
作者
Huang, Haiyan [1 ]
Roy, David P. [1 ,2 ]
De Lemos, Hugo [1 ]
Qiu, Yuean [1 ]
Zhang, Hankui K. [3 ]
机构
[1] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA
[3] South Dakota State Univ, Geospatial Sci Ctr Excellence, Dept Geog & Geospatial Sci, Brookings, SD 57007 USA
来源
SCIENCE OF REMOTE SENSING | 2025年 / 11卷
关键词
Cloud; Cloud shadow; Deep learning; HLS; Sentinel-2; Swin-Unet; ATMOSPHERIC CORRECTION; IMAGERY; AEROSOL;
D O I
10.1016/j.srs.2025.100213
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The NASA Harmonized Landsat Sentinel-2 (HLS) data provides global coverage atmospherically corrected surface reflectance with a 30m cloud and cloud shadow mask derived using the Fmask algorithm applied to top-ofatmosphere (TOA) reflectance. In this study we demonstrate, as have other researchers, low Sentinel-2 Fmask performance, and present a solution that applies a deep learning Swin-Unet model to the HLS surface reflectance to provide unambiguously improved cloud and cloud shadow detection. The model was trained and assessed using 30m HLS surface reflectance for the 13 Sentinel-2 bands and corresponding CloudSEN12+ annotations, that define cloud, thin cloud, clear, and cloud shadow, and is the largest publicly available expert annotation set. All the CloudSEN12 annotations with coincident HLS Sentinel-2 data were considered. A total of 8672 globally distributed 5 x 5 km data sets were used, 7362 to train the model, 464 for internal model validation, and 846 to independently assess the classification accuracy. The HLS Sentinel-2 Fmask had F1-scores of 0.832 (cloud), 0.546 (cloud shadow), and 0.873 (clear), and the Swin-Unet model had higher performance with F1-scores of 0.891 (cloud and thin cloud combined), 0.710 (cloud shadow), and 0.923 (clear) despite the use of surface and not TOA reflectance. The Swin-Unet thin cloud class had low accuracy (0.604 F1-score) likely due to atmospheric correction issues and thin cloud variability that are discussed. The comprehensively trained model provides a solution for users who wish to improve the HLS Sentinel-2 cloud and cloud shadow masking using the available HLS Sentinel-2 surface reflectance data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The Harmonized Landsat and Sentinel-2 surface reflectance data set
    Claverie, Martin
    Ju, Junchang
    Masek, Jeffrey G.
    Dungan, Jennifer L.
    Vermote, Eric F.
    Roger, Jean-Claude
    Skakun, Sergii V.
    Justice, Christopher
    REMOTE SENSING OF ENVIRONMENT, 2018, 219 : 145 - 161
  • [2] CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2
    Cesar Aybar
    Luis Ysuhuaylas
    Jhomira Loja
    Karen Gonzales
    Fernando Herrera
    Lesly Bautista
    Roy Yali
    Angie Flores
    Lissette Diaz
    Nicole Cuenca
    Wendy Espinoza
    Fernando Prudencio
    Valeria Llactayo
    David Montero
    Martin Sudmanns
    Dirk Tiede
    Gonzalo Mateo-García
    Luis Gómez-Chova
    Scientific Data, 9
  • [3] CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2
    Aybar, Cesar
    Ysuhuaylas, Luis
    Loja, Jhomira
    Gonzales, Karen
    Herrera, Fernando
    Bautista, Lesly
    Yali, Roy
    Flores, Angie
    Diaz, Lissette
    Cuenca, Nicole
    Espinoza, Wendy
    Prudencio, Fernando
    Llactayo, Valeria
    Montero, David
    Sudmanns, Martin
    Tiede, Dirk
    Mateo-Garcia, Gonzalo
    Gomez-Chova, Luis
    SCIENTIFIC DATA, 2022, 9 (01)
  • [4] Cloud and cloud shadow masking for Sentinel-2 using multitemporal images in global area
    Candra, Danang Surya
    Phinn, Stuart
    Scarth, Peter
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 2877 - 2904
  • [5] Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy
    Xue, Jie
    Anderson, Martha C.
    Gao, Feng
    Hain, Christopher
    Yang, Yun
    Knipper, Kyle R.
    Kustas, William P.
    Yang, Yang
    REMOTE SENSING, 2021, 13 (17)
  • [6] AgroShadow: A New Sentinel-2 Cloud Shadow Detection Tool for Precision Agriculture
    Magno, Ramona
    Rocchi, Leandro
    Dainelli, Riccardo
    Matese, Alessandro
    Di Gennaro, Salvatore Filippo
    Chen, Chi-Farn
    Son, Nguyen-Thanh
    Toscano, Piero
    REMOTE SENSING, 2021, 13 (06)
  • [7] Comparison of cloud detection algorithms for Sentinel-2 imagery
    Tarrio, Katelyn
    Tang, Xiaojing
    Masek, Jeffrey G.
    Claverie, Martin
    Ju, Junchang
    Qiu, Shi
    Zhu, Zhe
    Woodcock, Curtis E.
    SCIENCE OF REMOTE SENSING, 2020, 2
  • [8] OPERA DYNAMIC SURFACE WATER EXTENTS FOR HARMONIZED LANDSAT SENTINEL-2 (DSWX-HLS) VALIDATION ACTIVITIES
    Arena, Nicholas
    Bato, Grace
    Bekaert, David
    Bonnema, Matthew
    Chan, Steven
    Chapman, Bruce
    Jones, John W.
    Handwerger, Alexander L.
    Lewandowski, Alex
    Marshak, Charlie
    Sangha, Simran
    Venkataramani, Karthik
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2723 - 2726
  • [9] A Priori Surface Reflectance-Based Cloud Shadow Detection Algorithm for Landsat 8 OLI
    Sun, Lin
    Wang, Quan
    Zhou, Xueying
    Wei, Jing
    Yang, Xu
    Zhang, Wenhua
    Ma, Nan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) : 1610 - 1614
  • [10] An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC
    Skakun, Sergii
    Vermote, Eric F.
    Artigas, Andres Eduardo Santamaria
    Rountree, William H.
    Roger, Jean-Claude
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 95