Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning

被引:0
|
作者
Chen, Runhang [1 ]
Jing, Xiao-Yuan [1 ,2 ,3 ]
Chen, Haowen [4 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China
[3] Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China
[4] Informat Engn Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
关键词
Class-Incremental Learning; Exemplar-Free Class-Incremental Learning; Knowledge Distillation;
D O I
10.1007/978-981-97-8502-5_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge, requiring models to learn tasks sequentially without accessing data from previous tasks. This challenge is exacerbated when the initial dataset is insufficient for facilitating model adaptation to subsequent tasks. Existing methods often employ a joint loss function to improve model adaptability and knowledge retention. However, these methods still face challenges in mitigating forgetting of knowledge from old classes. To address this issue, we propose a new approach called Adaptive Knowledge Matching (AKM). We first adopt a log-cosh loss function to better retain previously learned knowledge. Then, we introduce an adaptive weighting strategy that dynamically balances knowledge from old and new classes. Experiments on benchmark datasets (CIFAR100, Tiny-ImageNet, and ImageNet-Subset) demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [1] Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning
    Yao, Zhongren
    Chang, Xiaobin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 476 - 489
  • [2] PLASTIL: PLASTIC AND STABLE EXEMPLAR-FREE CLASS-INCREMENTAL LEARNING
    Petit, Gregoire
    Popescu, Adrian
    Belouadah, Eden
    Picard, David
    Delezoide, Bertrand
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 399 - 414
  • [3] FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
    Petit, Gregoire
    Popescu, Adrian
    Schindler, Hugo
    Picard, David
    Delezoide, Bertrand
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3900 - 3909
  • [4] FRMM: Feature Reprojection for Exemplar-Free Class-Incremental Learning
    Wang, Hao
    Chen, Jing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 251 - 263
  • [5] Representation Robustness and Feature Expansion for Exemplar-Free Class-Incremental Learning
    Luo, Yong
    Ge, Hongwei
    Liu, Yuxuan
    Wu, Chunguo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5306 - 5320
  • [6] Less confidence, less forgetting: Learning with a humbler teacher in exemplar-free Class-Incremental learning
    Gao, Zijian
    Xu, Kele
    Zhuang, Huiping
    Liu, Li
    Mao, Xinjun
    Ding, Bo
    Feng, Dawei
    Wang, Huaimin
    NEURAL NETWORKS, 2024, 179
  • [7] Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning
    Liu, Xialei
    Zhai, Jiang-Tian
    Bagdanov, Andrew D.
    Li, Ke
    Cheng, Ming-Ming
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 23954 - 23963
  • [8] Class-Incremental Exemplar Compression for Class-Incremental Learning
    Luo, Zilin
    Liu, Yaoyao
    Schiele, Bernt
    Sun, Qianru
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11371 - 11380
  • [9] DS-AL: A Dual-Stream Analytic Learning for Exemplar-Free Class-Incremental Learning
    Zhuang, Huiping
    He, Run
    Tong, Kai
    Zeng, Ziqian
    Chen, Cen
    Lin, Zhiping
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17237 - 17244
  • [10] Self-distilled Knowledge Delegator for Exemplar-free Class Incremental Learning
    Ye, Fanfan
    Ma, Liang
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,