ANNZ plus : an enhanced photometric redshift estimation algorithm with applications on the PAU survey

被引:0
|
作者
Pathi, Imdad Mahmud [1 ]
Soo, John Y. H. [1 ]
Wee, Mao Jie [1 ]
Zakaria, Sazatul Nadhilah [1 ]
Ismail, Nur Azwin [1 ]
Baugh, Carlton M. [2 ]
Manzoni, Giorgio [3 ]
Gaztanaga, Enrique [4 ,5 ,6 ]
Castander, Francisco J. [5 ,6 ]
Eriksen, Martin [7 ,8 ]
Carretero, Jorge [8 ,9 ]
Fernandez, Enrique [7 ]
Garcia-Bellido, Juan [10 ]
Miquel, Ramon [7 ,11 ]
Padilla, Cristobal [7 ]
Renard, Pablo [12 ]
Sanchez, Eusebio [9 ]
Sevilla-Noarbe, Ignacio [9 ]
Tallada-Crespi, Pau [8 ,9 ]
机构
[1] Univ Sains Malaysia, Sch Phys, Usm 11800, Pulau Pinang, Malaysia
[2] Univ Durham, Inst Computat Cosmol, Dept Phys, Sci Labs, South Rd, Durham DH1 3LE, England
[3] Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study, Hong Kong, Peoples R China
[4] Univ Portsmouth, Inst Cosmol & Gravitat ICG, Portsmouth PO1 3FX, England
[5] Univ Autonoma Barcelona, Inst Space Sci, CSIC, ICE, Carrer de Can Magrans S-N, E-08193 Cerdanyola Del Valles, Barcelona, Spain
[6] Univ Politecn Cataluna, Inst Estudis Espacials Catalunya IEEC, Edifci RDIT, E-08860 Castelldefels, Barcelona, Spain
[7] Univ Autonoma Barcelona, Inst Fis Altes Energies IFAE, E-08193 Bellaterra, Barcelona, Spain
[8] Univ Autonoma Barcelona, Port Informacio Cient PIC, Carrer Albareda S-N, E-08193 Bellaterra, Barcelona, Spain
[9] Ctr Invest Energet Medioambientales & Tecnol CIEMA, Ave Complutense 40, E-28040 Madrid, Spain
[10] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Canto Blanco, Madrid, Spain
[11] Inst Catalana Rercerca & Estudis Avancats ICREA, Pg de Lluis Co 23, E-08010 Barcelona, Spain
[12] Tsinghua Univ, Dept Astron, Beijing 100084, Peoples R China
基金
美国安德鲁·梅隆基金会;
关键词
galaxy surveys; high redshift galaxies; Machine learning; DIGITAL SKY SURVEY; DEEP NEURAL-NETWORKS; GALAXY FORMATION; MACHINE; SELECTION; CATALOG; MODELS;
D O I
10.1088/1475-7516/2025/01/097
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
ANNz is a fast and simple algorithm which utilises artificial neural networks (ANNs), it was known as one of the pioneers of machine learning approaches to photometric redshift estimation decades ago. We enhanced the algorithm by introducing new activation functions like tanh, softplus, SiLU, Mish and ReLU variants; its new performance is then vigorously tested on legacy samples like the Luminous Red Galaxy (LRG) and Stripe-82 samples from SDSS, as well as modern galaxy samples like the Physics of the Accelerating Universe Survey (PAUS). This work focuses on testing the robustness of activation functions with respect to the choice of ANN architectures, particularly on its depth and width, in the context of galaxy photometric redshift estimation. Our upgraded algorithm, which we named ANNz+, shows that the tanh and Leaky ReLU activation functions provide more consistent and stable results across deeper and wider architectures with > 1 per cent improvement in root-mean-square error ( A RMS ) and 68th percentile error (A68) when tested on SDSS data sets. While assessing its capabilities in handling high dimensional inputs, we achieved an improvement of 11 per cent in A RMS and 6 per cent in A 68 with the tanh activation function when tested on the 40-narrowband PAUS dataset; it even outperformed ANNz2, its supposed successor, by 44 per cent in A RMS . This justifies the effort to upgrade the 20-year-old ANNz, allowing it to remain viable and competitive within the photo-z community today. The updated algorithm ANNz+ is publicly available at https://github.com/imdadmpt/ANNzPlus.
引用
收藏
页数:41
相关论文
共 21 条
  • [1] The PAU survey Enhancing photometric redshift estimation using DEEPz
    Daza-Perilla, I.V. (vanessa.daza@unc.edu.ar), 1600, EDP Sciences (693):
  • [2] The PAU survey: photometric redshift estimation in deep wide fields
    Navarro-Girones, D.
    Gaztanaga, E.
    Crocce, M.
    Wittje, A.
    Hildebrandt, H.
    Wright, A. H.
    Siudek, M.
    Eriksen, M.
    Serrano, S.
    Renard, P.
    Gonzalez, E. J.
    Baugh, C. M.
    Cabayol, L.
    Carretero, J.
    Casas, R.
    Castander, F. J.
    Daza-Perilla, I., V
    De Vicente, J.
    Fernandez, E.
    Garcia-Bellido, J.
    Hoekstra, H.
    Manzoni, G.
    Miquel, R.
    Padilla, C.
    Sanchez, E.
    Sevilla-Noarbe, I
    Tallada-Crespi, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 534 (02) : 1504 - 1527
  • [3] The PAU survey: Enhancing photometric redshift estimation using DEEPz
    Daza-Perilla, I. V.
    Eriksen, M.
    Navarro-Girones, D.
    Gonzalez, E. J.
    Rodriguez, F.
    Gaztanaga, E.
    Baugh, C. M.
    Lares, M.
    Cabayol-Garcia, L.
    Castander, F. J.
    Siudek, M.
    Wittje, A.
    Hildebrandt, H.
    Casas, R.
    Tallada-Crespi, P.
    Garcia-Bellido, J.
    Sanchez, E.
    Sevilla-Noarbe, I.
    Miquel, R.
    Padilla, C.
    Renard, P.
    Carretero, J.
    De Vicente, J.
    ASTRONOMY & ASTROPHYSICS, 2025, 693
  • [4] The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field
    Eriksen, M.
    Alarcon, A.
    Gaztanaga, E.
    Amara, A.
    Cabayol, L.
    Carretero, J.
    Castander, F. J.
    Crocce, M.
    Delfino, M.
    De Vicente, J.
    Fernandez, E.
    Fosalba, P.
    Garcia-Bellido, J.
    Hildebrandt, H.
    Hoekstra, H.
    Joachimi, B.
    Norberg, P.
    Miquel, R.
    Padilla, C.
    Refregier, A.
    Sanchez, E.
    Serrano, S.
    Sevilla-Noarbe, I.
    Tallada, P.
    Tonello, N.
    Tortorelli, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 4200 - 4215
  • [5] ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning
    Sadeh, I.
    Abdalla, F. B.
    Lahav, O.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2016, 128 (968)
  • [6] ANNz2-Photometric redshift and probability density function estimation using machine-learning
    Sadeh, Iftach
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 316 - 318
  • [7] GAz: a genetic algorithm for photometric redshift estimation
    Hogan, Robert
    Fairbairn, Malcolm
    Seeburn, Navin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (02) : 2040 - 2046
  • [8] Photometric redshift estimation for CSST survey with LSTM neural networks
    Luo, Zhijian
    Li, Yicheng
    Lu, Junhao
    Chen, Zhu
    Fu, Liping
    Zhang, Shaohua
    Xiao, Hubing
    Du, Wei
    Gong, Yan
    Shu, Chenggang
    Ma, Wenwen
    Meng, Xianmin
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (02) : 1844 - 1855
  • [9] An Automatic System for Photometric Redshift Estimation Based on Sky Survey Data
    Wang, Dan
    Zhang, Yan-xia
    Zhao, Yong-heng
    ADVANCED SOFTWARE AND CONTROL FOR ASTRONOMY II, PTS 1 & 2, 2008, 7019
  • [10] An Algorithm for Redshift Estimation of Photometric Images Using Convolutional Neural Networks
    Wu Kuang
    Sun Chun
    Cao Guan-long
    Qiu Bo
    Yao Lin
    Zhang Ming-ru
    Zhang Li-wen
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2529 - 2535