Penalized estimation of finite mixture models

被引:0
|
作者
Budanova, Sofya [1 ]
机构
[1] HSE Univ, Int Coll Econ & Finance, 11 Pokrovsky Bulvar, Moscow 109028, Russia
关键词
Big data; LASSO; SCAD; Non-identification; Bounded rationality; Finite mixtures; Clustering; MAXIMUM-LIKELIHOOD-ESTIMATION; NONPARAMETRIC-ESTIMATION; PARTIAL IDENTIFICATION; VARIABLE SELECTION; IDENTIFIABILITY; DISTRIBUTIONS; LASSO; ASYMPTOTICS; INFERENCE; NUMBER;
D O I
10.1016/j.jeconom.2025.105958
中图分类号
F [经济];
学科分类号
02 ;
摘要
Economists often model unobserved heterogeneity using finite mixtures. In practice, the number of mixture components is rarely known. Model parameters lack point-identification if the estimation includes too many components, thus invalidating the classic properties of maximum likelihood estimation. I propose a penalized likelihood method to estimate finite mixtures with an unknown number of components. The resulting Order-Selection-Consistent Estimator (OSCE) consistently estimates the true number of components and achieves oracle efficiency. This paper extends penalized estimation to models without point-identification and to mixtures with growing number of components. I apply the OSCE to estimate players' rationality levels in a coordination game.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Penalized Estimation of a Finite Mixture of Linear Regression Models
    Rocci, Roberto
    Di Mari, Roberto
    Gattone, Stefano Antonio
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 326 - 333
  • [2] Penalized estimation in finite mixture of ultra-high dimensional regression models
    Tang, Shiyi
    Zheng, Jiali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (17) : 5971 - 5992
  • [3] Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
    Eskandari, Farzad
    Ormoz, Ehsan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3744 - 3759
  • [4] Penalized minimum-distance estimates in finite mixture models
    Chen, JH
    Kalbfleisch, JD
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (02): : 167 - 175
  • [5] Robust Estimation in Finite Mixture Models*
    Lecestre, Alexandre
    ESAIM-PROBABILITY AND STATISTICS, 2023, 27 : 402 - 460
  • [6] Penalized likelihood-ratio test for finite mixture models with multinomial observations
    Chen, JH
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (04): : 583 - 599
  • [7] Evaluate the number of clusters in finite mixture models with the penalized histogram difference criterion
    Lin, Weilu
    Wang, Yonghong
    Zhuang, Yingping
    Zhang, Siliang
    JOURNAL OF PROCESS CONTROL, 2013, 23 (08) : 1052 - 1062
  • [8] Unsupervised selection and estimation of finite mixture models
    Figueiredo, MAT
    Jain, AK
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 87 - 90
  • [9] Robust estimation for the order of finite mixture models
    Sangyeol Lee
    Taewook Lee
    Metrika, 2008, 68 : 365 - 390
  • [10] Robust estimation for the order of finite mixture models
    Lee, Sangyeol
    Lee, Taewook
    METRIKA, 2008, 68 (03) : 365 - 390