EXPERIMENTAL EVALUATION OF A MACHINE-LEARNING METHOD FOR GENERATING SYNTHETIC PATIENT DATA FOR APPLICATIONS IN HEALTH ECONOMICS AND OUTCOMES RESEARCH

被引:0
|
作者
Chebuniaev, I [1 ]
Aballea, S. [2 ]
Toumi, M. [3 ]
机构
[1] InovIntell, Tbilisi, Georgia
[2] InovIntell, Rotterdam, South Holland, Netherlands
[3] Aix Marseille Univ, Marseille, France
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
MSR128
引用
收藏
页数:2
相关论文
共 30 条
  • [1] A MACHINE-LEARNING APPROACH FOR GENERATING SYNTHETIC PRISMA HYPERSPECTRAL IMAGES FROM MULTISPECTRAL DATA
    Monaco, Manilo
    Licciardi, Giorgio A.
    Battagliere, Maria L.
    Guarini, Rocchina
    Cimino, Mario G. C. A.
    Candela, Laura
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3659 - 3662
  • [2] APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN HEALTH ECONOMICS AND OUTCOMES RESEARCH: A TARGETED LITERATURE REVIEW
    Dasari, M.
    Dasari, P.
    Sharma, A.
    Anerh, H.
    Shah, D.
    VALUE IN HEALTH, 2024, 27 (12)
  • [3] Generating Research Questions from Digital Trace Data: A Machine-Learning Method for Discovering Patterns in a Dynamic Environment
    Kallio, Henrik
    Malo, Pekka
    Lainema, Timo
    Bragge, Johanna
    Seppala, Tomi
    Penttinen, Esko
    COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2022, 51 : 564 - 589
  • [4] Generating Research Questions from Digital Trace Data: A Machine-Learning Method for Discovering Patterns in a Dynamic Environment
    Kallio, Henrik
    Malo, Pekka
    Lainema, Timo
    Bragge, Johanna
    Seppälä, Tomi
    Penttinen, Esko
    Communications of the Association for Information Systems, 2022, 51 (01):
  • [5] Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
    Tucker, Allan
    Wang, Zhenchen
    Rotalinti, Ylenia
    Myles, Puja
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [6] Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
    Allan Tucker
    Zhenchen Wang
    Ylenia Rotalinti
    Puja Myles
    npj Digital Medicine, 3
  • [7] Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
    Tucker A.
    Wang Z.
    Rotalinti Y.
    Myles P.
    Tucker, Allan (allan.tucker@brunel.ac.uk), 1600, Nature Research (03):
  • [8] USE OF MACHINE LEARNING IN HEALTH ECONOMICS AND OUTCOMES RESEARCH (HEOR): OPTIMIZING PREDICTIVE MODELS
    Royer, J.
    Wu, E.
    Ayyagari, R.
    VALUE IN HEALTH, 2019, 22 : S319 - S319
  • [9] Classifying Asthma Health Deterioration Using Synthetic Patient Data Generation and Associated Machine-learning Predictions Derived From Global Clinical Characteristic Data
    Iyer, S.
    Swaminathan, S.
    Landon, C.
    Wysham, N.
    Ramanathan, S.
    Toro, B.
    Naseer, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [10] A Scoping Review of the Use of Machine Learning in Health Economics and Outcomes Research: Part 2-Data From Nonwearables
    Lee, Woojung
    Schwartz, Naomi
    Bansal, Aasthaa
    Khor, Sara
    Hammarlund, Noah
    Basu, Anirban
    Devine, Beth
    VALUE IN HEALTH, 2022, 25 (12) : 2053 - 2061