Finite Difference and Chebyshev Collocation for Time-Fractional and Riesz Space Distributed-Order Advection-Diffusion Equation with Time-Delay

被引:0
|
作者
Wang, Fang [1 ]
Chen, Yuxue [1 ]
Liu, Yuting [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410001, Peoples R China
基金
中国国家自然科学基金;
关键词
second finite difference; spectral collocation; second kind Chebyshev polynomials; advection-diffusion equation; Riesz space distributed-order; WAVE EQUATION; SCHEME; STABILITY; SYSTEMS;
D O I
10.3390/fractalfract8120700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have established a numerical method for a class of time-fractional and Riesz space distributed-order advection-diffusion equation with time-delay. Firstly, we transform the Riesz space distributed-order derivative term of the diffusion equation into multi-term fractional derivatives by using the Gauss quadrature formula. Secondly, we discretize time by using second-order finite differences, discretize space by using second kind Chebyshev polynomials, and convert the multi-term fractional equation to a system of algebraic equations. Finally, we solve the algebraic equations by the iterative method, and prove the stability and convergence. Moreover, relevant examples are shown to verify the validity of our algorithm.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay
    Javidi M.
    Heris M.S.
    SeMA Journal, 2019, 76 (4) : 533 - 551
  • [2] A novel finite volume method for the Riesz space distributed-order advection-diffusion equation
    Li, J.
    Liu, F.
    Feng, L.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 536 - 553
  • [3] Finite difference method for the Riesz space distributed-order advection-diffusion equation with delay in 2D: convergence and stability
    Heris, Mahdi Saedshoar
    Javidi, Mohammad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12): : 16887 - 16917
  • [4] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [5] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    ENTROPY, 2018, 20 (05)
  • [6] Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space–time fractional advection-diffusion equation
    H. Safdari
    Y. Esmaeelzade Aghdam
    J. F. Gómez-Aguilar
    Engineering with Computers, 2022, 38 : 1409 - 1420
  • [7] A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation
    M. Fardi
    J. Alidousti
    Mathematical Sciences, 2022, 16 : 417 - 430
  • [8] Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space-time fractional advection-diffusion equation
    Safdari, H.
    Aghdam, Y. Esmaeelzade
    Gomez-Aguilar, J. F.
    ENGINEERING WITH COMPUTERS, 2022, 38 (02) : 1409 - 1420
  • [9] A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation
    Li, Xiaoli
    Rui, Hongxing
    APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 123 - 139
  • [10] A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data
    Fardi, Mojtaba
    Khan, Yasir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):