Development of ZnO Buffer Layers for As-Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%

被引:0
|
作者
Kujovic, Luksa [1 ]
Liu, Xiaolei [1 ]
Togay, Mustafa [1 ]
Abbas, Ali [1 ]
Law, Adam M. [1 ]
Jones, Luke O. [1 ]
Curson, Kieran M. [1 ]
Barth, Kurt L. [1 ]
Bowers, Jake W. [1 ]
Walls, John M. [1 ]
Oklobia, Ochai [2 ]
Lamb, Dan A. [2 ]
Irvine, Stuart J. C. [2 ]
Zhang, Wei [3 ]
Lee, Chungho [3 ]
Nagle, Timothy [3 ]
Lu, Dingyuan [3 ]
Xiong, Gang [3 ]
机构
[1] Loughborough Univ, Ctr Renewable Energy Syst Technol CREST, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, England
[2] Swansea Univ, Fac Sci & Engn, Ctr Solar Energy Res CSER, Ctr Integrat Semicond Mat CISM, Bay Campus, Swansea SA1 8EN, Wales
[3] Calif Technol Ctr CTC, First Solar Inc, 1035 Walsh Ave, Santa Clara, CA 95050 USA
基金
英国工程与自然科学研究理事会;
关键词
buffer layer; CdSeTe/CdTe; solar cells; ZnO; CADMIUM TELLURIDE; PASSIVATION; CARBON;
D O I
10.1002/admt.202401364
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for CdSeTe/CdTe solar cells is reported. The ZnO films are radio frequency sputter-deposited on SnO2:F coated soda-lime glass substrates. The substrate temperature for the ZnO deposition is varied from 22 to 500 degrees C. An efficiency of 20.74% is achieved using ZnO deposited at 100 degrees C. The ZnO thickness is varied between 40 nm and 75 nm. Following the ZnO depositions, devices were fabricated using First Solar's CdSeTe/CdTe absorber, CdCl2 treatment, and back contact. The optimal ZnO deposition temperature and thickness is 100 degrees C and 65 nm, respectively. The STEM-EDX analysis shows that within the detection limits, chlorine is not detected at the front interface of the devices using ZnO deposited at 22 degrees C and 100 degrees C. However, depositing ZnO at 500 degrees C results in chlorine segregation appearing at the ZnO/CdSeTe boundary. This suggests that chlorine is not needed to passivate the ZnO/CdSeTe interface during the lower temperature depositions. The nanocrystalline ZnO deposited at lower temperatures results in a high-quality interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 19.5% Efficient CdSeTe/CdTe Solar Cells Using ZnO Buffer Layers
    Kujovic, Luksa
    Liu, Xiaolei
    Togay, Mustafa
    Infante-Ortega, Luis C.
    Barth, Kurt L.
    Bowers, Jake W.
    Walls, John M.
    Oklobia, Ochai
    Irvine, Stuart J. C.
    Zhang, Wei
    Miller, David W.
    Nagle, Timothy
    Mallick, Rajni
    Lu, Dingyuan
    Metzger, Wyatt K.
    Xiong, Gang
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [2] Achieving 21.4% Efficient CdSeTe/CdTe Solar Cells Using Highly Resistive Intrinsic ZnO Buffer Layers
    Kujovic, Luksa
    Liu, Xiaolei
    Abbas, Ali
    Jones, Luke O.
    Law, Adam M.
    Togay, Mustafa
    Curson, Kieran M.
    Barth, Kurt L.
    Bowers, Jake W.
    Walls, John M.
    Oklobia, Ochai
    Lamb, Dan A.
    Irvine, Stuart J. C.
    Zhang, Wei
    Lee, Chungho
    Nagle, Timothy
    Lu, Dingyuan
    Xiong, Gang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (14)
  • [3] High Efficiency Evaporated CdSeTe/CdTe Solar Cells with and without MgZnO Buffer Layer
    Ablekimy, Tursun
    Duenow, Joel
    Moutinho, Helio
    Perkins, Craig
    Moseley, John
    Reese, Matthew
    Metzger, Wyatt
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1895 - 1897
  • [4] As-Doped CdSeTe Solar Cells Achieving 22% Efficiency With-0.23%/°C Temperature Coefficient
    Metzger, Wyatt K.
    Miller, D. Wes
    Mallick, Rajni
    Li, Xiaoping
    Zhang, Wei
    Wang, Ivy
    Polizzotti, Alex
    Ablekim, Tursun
    Cao, Dana H.
    Hamilton, Dylan C.
    Bailey, Jeff
    Lee, Chungho
    Grover, Sachit
    Lu, Dingyuan
    Xiong, Gang
    IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (06): : 1435 - 1438
  • [5] SnO2 buffer layers for high efficiency CdSeTe/CdTe devices.
    Infante-Ortega, L. C.
    Liu, Xiaolei
    Kujovic, Luksa
    Togay, Mustafa
    Jones, Luke O.
    Abbas, Ali
    Curson, Kieran
    Greenhalgh, R. C.
    Barth, Kurt L.
    Bowers, Jake W.
    Walls, John M.
    Oklobia, Ochai
    Irvine, Stuart
    Colegrove, Eric
    Good, Brian
    Reese, Matt
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [6] As-Doped Polycrystalline CdSeTe: Localized Defects, Carrier Mobility and Lifetimes, and Impact on High-Efficiency Solar Cells
    Scajev, Patrik
    Nardone, Marco
    Reich, Carey
    Farshchi, Rouin
    McReynolds, Kevin
    Krasikov, Dmitry
    Kuciauskas, Darius
    ADVANCED ENERGY MATERIALS, 2025, 15 (10)
  • [7] Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells
    W. K. Metzger
    S. Grover
    D. Lu
    E. Colegrove
    J. Moseley
    C. L. Perkins
    X. Li
    R. Mallick
    W. Zhang
    R. Malik
    J. Kephart
    C.-S. Jiang
    D. Kuciauskas
    D. S. Albin
    M. M. Al-Jassim
    G. Xiong
    M. Gloeckler
    Nature Energy, 2019, 4 : 837 - 845
  • [8] Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells
    Metzger, W. K.
    Grover, S.
    Lu, D.
    Colegrove, E.
    Moseley, J.
    Perkins, C. L.
    Li, X.
    Mallick, R.
    Zhang, W.
    Malik, R.
    Kephart, J.
    Jiang, C. -S.
    Kuciauskas, D.
    Albin, D. S.
    Al-Jassim, M. M.
    Xiong, G.
    Gloeckler, M.
    NATURE ENERGY, 2019, 4 (10) : 837 - 845
  • [9] Efficiency Advances in Thin CdSeTe/CdTe Solar Cells with CdMgTe at the Back
    Bothwell, Alexandra M.
    Drayton, Jennifer A.
    Sites, James R.
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1248 - 1253
  • [10] Scanning Kelvin probe measurements on As-doped CdTe solar cells
    Brooks, W. S. M.
    Irvine, S. J. C.
    Taylor, D. M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (10)