Wearable gait analysis of Cervical Spondylotic Myelopathy patients by fusing bipedal inertial information

被引:0
|
作者
Shi, Xin [1 ,2 ]
Wang, Zhelong [1 ,2 ]
Qiu, Sen [1 ,2 ]
Lin, Fang [1 ,2 ]
Liu, Ruichen [1 ,2 ]
Tang, Kai [3 ]
Hou, Pengrong [1 ,2 ]
Chu, Qinghao [1 ,2 ]
Chen, Yongtao [1 ,2 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Dalian Med Univ, Affiliated Hosp 1, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Cervical spondylotic myelopathy; Inertial sensors; Gait analysis; Bipedal information fusion; OF-THE-ART; HEALTH-CARE; SENSORS; SYSTEM; TASKS;
D O I
10.1016/j.inffus.2025.103115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cervical Spondylotic Myelopathy (CSM) is a degenerative disorder caused by cervical spinal cord compression, resulting in neurological impairment that disrupts motor function and leads to gait disturbances. Refined gait analysis through parameter quantification and multi-level feature fusion is essential for advancing precision medicine and rehabilitation research for CSM. This paper explores portable gait analysis for CSM patients using inertial sensors to enable multi-level analysis via bipedal information fusion. An adaptive threshold-based gait phase segmentation method is proposed, allowing zero-velocity update-aided spatial parameter calculation, with results consistent across optical laboratory and practical test. Using high-precision spatiotemporal parameters and movement intensity features, we further analyzed gait rhythm, stability, and symmetry, introducing an improved EWT-based indicator for rhythm and symmetry. Finally, statistical analysis and machine learning-based feature ranking of CSM gait characteristics were performed, accompanied by a detailed discussion on feature types. The results underscore the critical role of fused features in capturing CSM gait patterns, offering a valuable reference for comprehensive gait analysis for CSM patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gait Analysis in Cervical Spondylotic Myelopathy
    Nishimura, Hirosuke
    Endo, Kenji
    Suzuki, Hidekazu
    Tanaka, Hidetoshi
    Shishido, Takaaki
    Yamamoto, Kengo
    ASIAN SPINE JOURNAL, 2015, 9 (03) : 321 - 326
  • [2] Investigation of gait and balance function in cervical spondylotic myelopathy patients using wearable sensors
    Khattak, Zawar Khan
    Jiao, Xin
    Hu, Tianyi
    Shao, Qineng
    Sun, Xin
    Zhao, Xin
    Gu, Dongyun
    SPINE JOURNAL, 2023, 23 (08): : 1127 - 1136
  • [3] Characterizing gait abnormalities in patients with cervical spondylotic myelopathy: a neuromuscular analysis
    Haddas, Ram
    Cox, Joseph
    Belanger, Theodore
    Ju, Kevin L.
    Derman, Peter B.
    SPINE JOURNAL, 2019, 19 (11): : 1803 - 1808
  • [4] Effect of Cervical Decompression Surgery on Gait in Adult Cervical Spondylotic Myelopathy Patients
    Haddas, Ram
    Lieberman, Isador
    Arakal, Raj
    Boah, Akwasi
    Belanger, Theodore
    Ju, Kevin
    CLINICAL SPINE SURGERY, 2018, 31 (10): : 435 - 440
  • [5] Evaluation of Gait and Functional Stability in Preoperative Cervical Spondylotic Myelopathy Patients
    Hassanzadeh, Hamid
    Bell, Joshua
    Dooley, Evan
    Puvanesarajah, Varun
    Kamalapathy, Pramod
    Labaran, Lawal
    Shimer, Adam
    Shen, Francis
    Russell, Shawn
    SPINE, 2022, 47 (04) : 317 - 323
  • [6] Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy
    McDermott, Ailish
    Bolger, Ciaran
    Keating, Louise
    McEvoy, Linda
    Meldrum, Dara
    GAIT & POSTURE, 2010, 32 (04) : 552 - 558
  • [7] Detection of cervical spondylotic myelopathy based on gait analysis and deterministic learning
    Ji, Bing
    Dai, Qihang
    Ji, Xinyu
    Wu, Weiming
    Sun, Qinghua
    Ma, Hecheng
    Cong, Menglin
    Cheng, Lei
    Wang, Cong
    Si, Meng
    Zeng, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9157 - 9173
  • [8] Detection of cervical spondylotic myelopathy based on gait analysis and deterministic learning
    Bing Ji
    Qihang Dai
    Xinyu Ji
    Weiming Wu
    Qinghua Sun
    Hecheng Ma
    Menglin Cong
    Lei Cheng
    Cong Wang
    Meng Si
    Wei Zeng
    Artificial Intelligence Review, 2023, 56 : 9157 - 9173
  • [9] Electromyographic characteristics of gait impairment in cervical spondylotic myelopathy
    Ailish Malone
    Dara Meldrum
    John Gleeson
    Ciaran Bolger
    European Spine Journal, 2013, 22 : 2538 - 2544
  • [10] Electromyographic characteristics of gait impairment in cervical spondylotic myelopathy
    Malone, Ailish
    Meldrum, Dara
    Gleeson, John
    Bolger, Ciaran
    EUROPEAN SPINE JOURNAL, 2013, 22 (11) : 2538 - 2544